MITIGATION SITE PLAN

SC-65: BECKERS CORNERS ROAD

MITIGATION SITE PLAN SC-65: BECKERS CORNERS ROAD

SITE ID: SC-65

SITE NAME: Beckers Corners Road Property

LOCATION: Sloansville, Schoharie County, New York

WATERSHED: Schoharie – 02020005

SITE TYPE: Wetland Mitigation

LANDOWNER: Frank T. Price, III

SITE DESCRIPTION

The Beckers Corners Road property is located at the headwaters of the Cripplebush Creek watershed. The property includes an intermittent stream, beaver pond, and associated wetlands (Photo 1) that drain west to a perennial stream just west of the property line. This perennial stream has its confluence with Cripplebush Creek at a point less than 1,000 feet from the subject property. Cripplebush Creek is classified as a Class C stream by the New York Department of Environmental Conservation (NYDEC) and feeds into Schoharie Creek. The sources of water entering Cripplebush Creek are a 78.4-acre NYDEC-regulated wetland on the abutting northwest property, which is owned by the Sisson Family Trust, and the proposed mitigation property, which consists of one parcel totaling 56.7 acres. The wetlands on the mitigation parcel are connected hydrologically to the mapped 78.4-acre NYDEC-regulated wetland; therefore, the NYDEC considers them to be a single, regulated wetland.

The land is relatively steep with an average slope of approximately 8 percent. Poorly to somewhat poorly drained soil derived from glacial till dominates the surficial geology of the property. The soils consist of:

- Burdett and Erie channery silt loams, somewhat poorly drained, 3 to 8 percent slopes
- Volusia, Morris, and Erie very stony soils, somewhat poorly drained, 0 to 8 percent slopes
- Lyons and Ilion very stony soils, poorly drained, 0 to 15 percent slopes
- Madalin silt loam, over till

Land use in the region is primarily agricultural. The mitigation site has cleared fields, including upland and wetland hayfields; a wet-meadow hayfield is dominated by 95% reed canary grass (*Phalaris arundinacea*) (Photos 2 and 3). The hayfield was flattened for agricultural production and lacks topographic and habitat diversity. The property contains palustrine emergent (PEM) and scrub-shrub (PSS) wetlands and numerous hillside seeps. Vegetation in the wetlands is dominated by a mix of native species, including meadowsweet (*Spiraea spp.*), soft rush (*Juncus*

effusus), wool grass (Scirpus cyperinus), blue vervain (Verbena hastata), and redosier dogwood (Cornus sericea); and invasive species, including reed canary grass (Phalaris arundinacea), and buckthorn (Rhamnus frangula). Approximately 40 percent of the land cover is forested with a mixture of softwoods and hardwoods. The property is used primarily for hay production, hunting, and other recreation and is completely undeveloped. The site is accessed by a gated gravel road off of Beckers Corner Road through a deeded right-of-way.

PROJECT DESCRIPTION

The proposed mitigation includes purchasing the land and preserving 11.7 acres of palustrine forested (PFO) wetland, 12.0 acres of palustrine scrub-shrub (PSS) wetland, 0.3 acres of palustrine emergent (PEM) wetland, and 7.7 acres of associated 150-foot buffer. On the eastern portion of the property, the proposed mitigation entails establishing 0.3 acres of PEM and 1.0 acres of PFO in the mowed fields adjacent to the pond by performing a series of shallow surface scrapes and planting native species found in adjacent reference wetlands. In the farm field south of the area to be scraped, proposed mitigation includes enhancing 0.9 acres of PEM, 1.3 acres of PSS, and 0.4 acres of PFO by:

- treating the monoculture of reed canary grass in the wet-meadow hayfield with herbicide;
- diversifying topography to create pockets of PFO on low-profile mounds that will shade
 out the invasive species and depressions that will allow seasonal ponding and provide
 potential breeding habitat for amphibians. The mounds will have elevations of up to 18"
 higher than the existing grade to accommodate PFO planting with woody species that
 will shade out invasive species. The pits will be excavated down to 18" below the
 existing grade and will create pool areas that are too wet for invasive species to survive;
 and
- replanting graded soils with native wetland species.

Groundwater in the proposed excavation area is generally perched above a dense basal till layer. Shallow groundwater gradually flows southwest through the area, maintaining sufficient hydrology for the existing and proposed wetlands. The shallow excavation proposed for creating or enhancing wetlands will not exceed the depth of the confining till layer.

Finally, 2.3 acres of 150-foot-wide, forested upland buffer will be established in currently mowed fields to protect the wetlands where possible (i.e., creating a 150-foot buffer is not possible in some places because it would extend into the adjacent property). The mitigation plan also includes preserving 0.5 acres of palustrine unconsolidated bottom (PUB) wetland. The remaining fields on the property will be allowed to undergo natural succession (i.e., mowing will cease). A permanent conservation easement will be arranged for the entire property. The land will be managed to allow public access for recreational purposes, but restrictions on timber harvesting and vehicle access will be implemented to protect the soil, vegetation, and wildlife habitat.

BENEFITS

The property is for sale on the real estate market and has deeded access and uplands suitable for development. Executing a conservation easement is the only way to ensure permanent protection from development. The property directly abuts a NYDEC-regulated wetland; therefore, preserving it not only will increase the continuous area of wildlife habitat that the Sisson Family Trust provides, but also will ensure that the parcel maintains wildlife corridors and blocks of contiguous forest.

Protecting the wetlands and surrounding upland buffers on this site will preserve or enhance several wetland functions. The large, continuous wetland system and surrounding undeveloped uplands make the area ideal habitat for wildlife. Species that require both wetland and upland habitats, such as mole salamanders (e.g., Ambystoma, spp) and wood frogs (Lithobates sylvaticus), will have access to habitat for breeding, foraging, and overwintering. Forested areas dominated by eastern hemlock (Tsuga canadensis) and mast-crop trees like oaks provide excellent habitat for several species. Forest interior birds such as ovenbird (Seiurus aurocapilla) and wood thrush (Hylocichla mustelina), will benefit from the eventual increase in forest interior habitat. In the short term, species that use successional habitat, such as savannah sparrow (Passerculus sandwichensis), woodcock (Scolopax minor), and bluebird (Sialia sialis), will benefit. The open water, beaver ponds, and emergent wetlands provide water sources for deer, (Odocoileus virginianus), turkey (Meleagris gallopavo), and bear (Ursus americanus). Migratory and aquatic birds can use this area for nesting, resting, and feeding.

This mitigation site occurs in the upper portion of the watershed and provides flood flow attenuation by preserving the existing wetland vegetation and beaver activity, creating additional wetland area, diversifying the topography to create shallow depressional features that will slow and store runoff, and allowing cleared fields to undergo natural succession. Increased contact with vegetation and soils will reduce peak run off into Cripplebush Creek and eventually Schoharie Creek, which has experienced flooding problems. Also, the shallow scrape, topographic diversification in the wet meadow hayfield, and establishment of more PFO wetlands will increase flood storage and minimize concentrated, downhill flow. The longer retention times resulting from lower flows and diverse wetland vegetation, combined with the poorly draining soils, provide excellent water quality improvement functions for nutrient removal and sediment retention. Protecting the existing forest and improving the riparian vegetation along this headwater wetland/stream complex will benefit the receiving streams (including Cripplebush Creek), which will receive cleaner, cooler water.

Figure 1 summarizes functions and services provided by the proposed mitigation site.

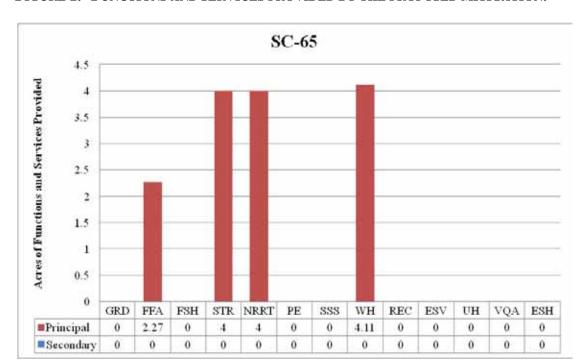


FIGURE 1. FUNCTIONS AND SERVICES PROVIDED BY THE PROPOSED MITIGATION.*

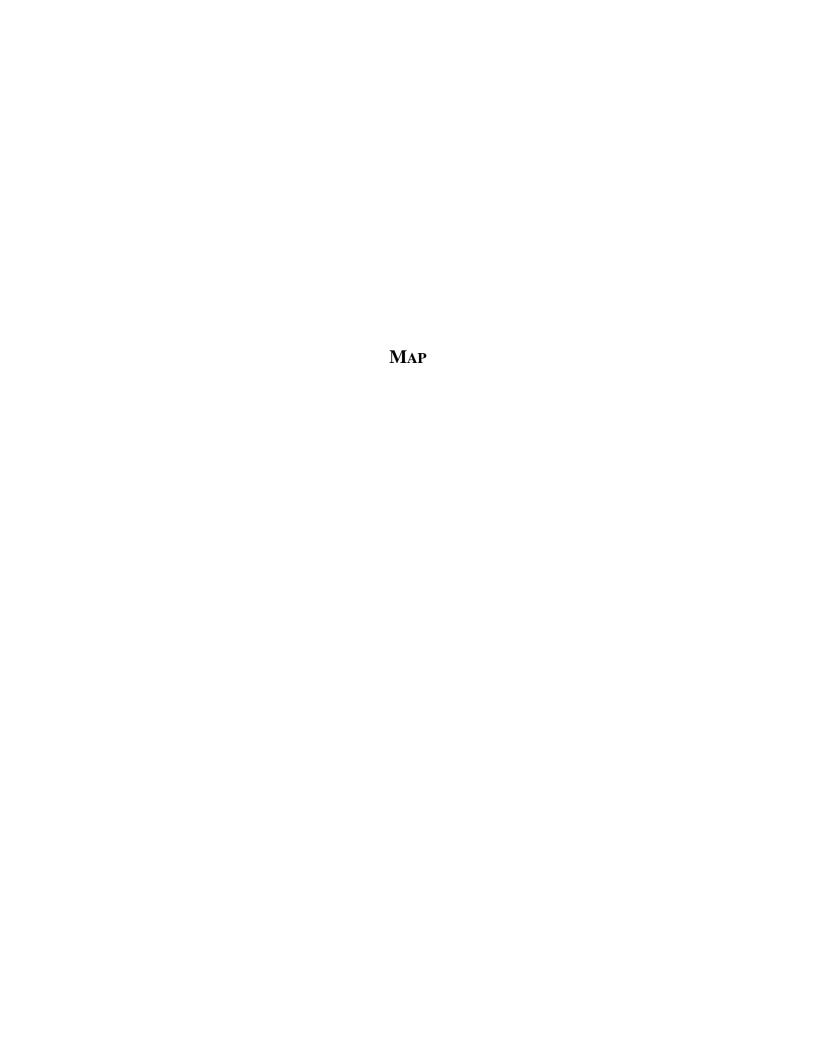
Groundwater Recharge/Discharge (GRD), Floodflow Alteration (FFA), Fish and Shellfish Habitat (FSH), Sediment/Toxicant Retention (STR), Nutrient Removal and Retention (NRRT), Production Export (PE), Sediment/Shoreline Stabilization (SSS), Wildlife Habitat (WH), Recreation (REC), Educational/Scientific Value (ESV), Uniqueness/Heritage (UH), Visual Quality and Aesthetics (VQA), Endangered Species Habitat (ESH).

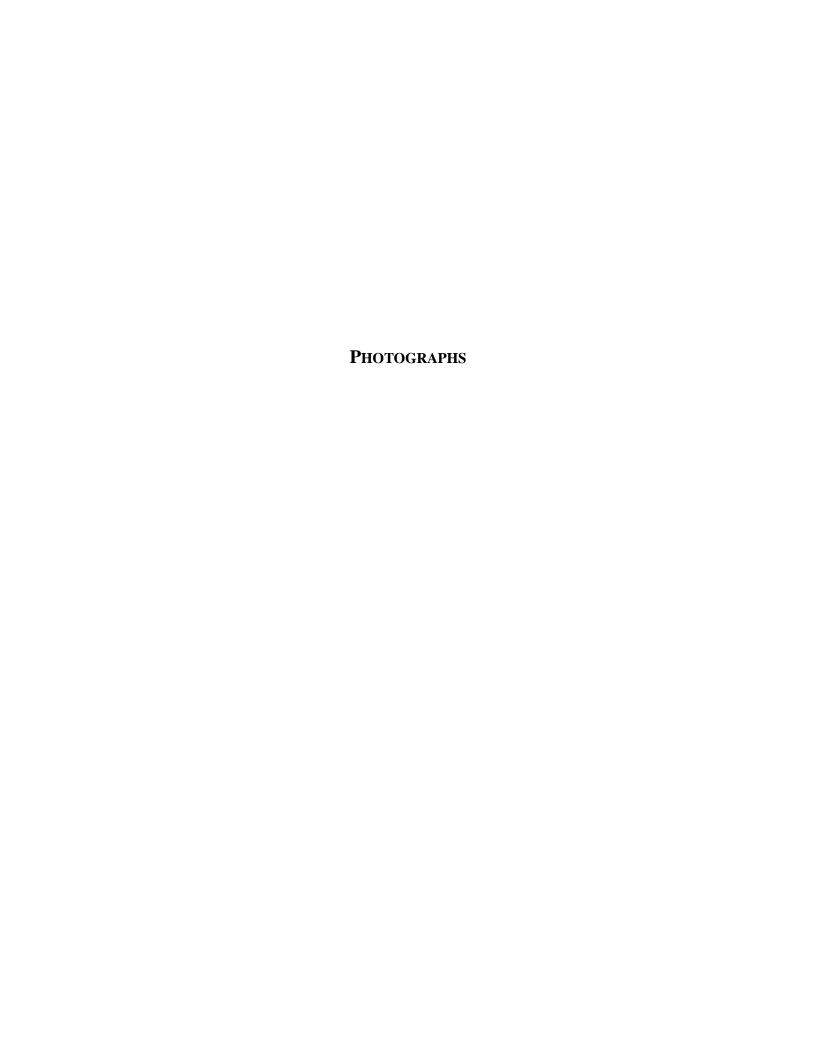
FEASIBILITY

The wetlands on this site are stable and surrounded by upland forest. The good condition, large area, and diverse habitats of the property provide an ideal opportunity for preservation. Degraded areas, such as the wet meadow dominated by reed canary grass (*Phalaris arundinacea*) and the adjacent mowed hillside to the north, provide good opportunities for enhancement, restoration, and establishment. Since the open fields have been in agricultural production, the vegetation community and topography have been significantly degraded. The proposed mitigation would restore lost function.

The wetland delineation, aerial photographs, and other desktop resources indicate that the wetlands on the site are hydrologically connected to mapped DEC wetlands offsite; therefore, the wetlands on the property are likely to be considered to fall under the jurisdiction of Article 24. The preservation component of this mitigation, therefore, is less important than the establishment and enhancement components because the wetlands are largely protected already. The proposed 150-foot buffer, however, will be more extensive than required by Article 24, which includes a regulated 100-foot buffer. The more extensive buffer protection of this important headwater

^{*} Functions and services shown do not include additional acreage of preservation of wetlands within the existing NYDEC wetland.


wetland and stream system provided by this mitigation project enhances the overall functional lift.


A Phase I Environmental Site Assessment (ESA) was conducted to identify recognized environmental conditions (RECs), historical RECs, or de minimis conditions associated with the property. No RECs, historical RECs, or de minimis conditions were identified. A Phase 1b archaeological assessment revealed no archaeological artifacts on the property. A geotechnical study included drilling four soil boring pits around the wetland mitigation area. The study revealed soil types and depths to groundwater consistent with the soil survey results. The surficial soil was identified as silt with sand, which is compatible with the proposed wetland plantings.

Acquiring the site is feasible, and the probability of success is high because the property is listed for sale. The property abuts preserved land, which increases the likelihood of a conservation easement and enhances the overall significance of the site from the perspective of watershed-scale conservation.

J:\3786\001\07 Permitting\Federal\USACE\Mitigation Plans\NY\July Version\Submittal Materials\Appendices\Appendix D-Mitigation Plans\SC-65\ SC-65 - Beckers Corner Rd - Mitigation Site Plan Narrative .docx

PHOTOGRAPH 1. BEAVER POND SURROUNDED BY PEM, PSS, AND PFO WETLANDS.

PHOTOGRAPH 2. MOWED FIELDS PROVIDE OPPORTUNITIES FOR ENHANCING OR ESTABLISHING WETLANDS.

PHOTOGRAPH 3. LARGE MONOCULTURE OF REED CANARY GRASS (ESTIMATED >95% COVERAGE) IN A FLAT AREA.

WETLAND DELINEATION REPORT

SITE ID: SC-65

SITE NAME: Beckers Corners Road Property

LOCATION: Colesville, Broome County, New York

WATERSHED: Schoharie – 020200051

SITE TYPE: Wetland Mitigation

LANDOWNER: Frank T. Price, III

SITE DESCRIPTION

The Beckers Corners Road property is located at the headwaters of the Cripplebush Creek watershed. Cripplebush Creek is classified as a Class C stream by the New York Department of Environmental Conservation (NYDEC) and is a direct tributary to Schoharie Creek. The source water for Cripplebush Creek is a 78.4-acre NYDEC regulated wetland on the abutting northeast property owned by the Sisson Family Trust. The proposed mitigation property consists of one parcel totaling 56.7 acres. The land is relatively steep with an average slope of approximately 8 percent. Poorly to somewhat poorly drained glacial till derived soils dominate the surficial geology of the property.

Land use in the region is primarily agricultural. The mitigation site has cleared fields, but none are currently in production. The fields contain palustrine emergent (PEM) and scrub-shrub (PSS) wetlands and numerous hillside seeps. The primary land use for the property is hunting and recreation. There is no development on the property.

METHODS

Field surveys were completed on November 12, 2013. Wetlands were field delineated by using the methodology and standard practices outlined in the United States Army Corps of Engineers (USACE) Wetland Delineation Manual (USACE, 1987) and the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region, Version 2.0 (USACE, 2012). The Corps Manual provides technical guidance and procedures for identifying and delineating wetlands that may be subject to jurisdiction under Section 404 of the Clean Water Act (33 U.S.C. 1344) or Section 10 of the Rivers and Harbors Act (33 U.S.C. 403). According to the Corps Manual, identification of wetlands is based on a three factor approach involving indicators of hydrophytic vegetation, wetland hydrology, and hydric soils. USACE data forms are included as Attachment A. Wetland functions and values were assessed for each wetland based on the USACE Highway Methodology Workbook Supplement "Wetland Functions and Values a Descriptive Approach" (USACE, 2001); data forms are included as Attachment B. All wetland features were delineated with sub-meter accuracy using a Trimble GEO-6000 Explorer GPS unit. GPS positions were differentially corrected using Trimble Pathfinder software (Ver. 5.40).

RESULTS

SAMPLE PLOT LOCATION

The primary wetland types identified within the survey segment were emergent and forested wetlands. These areas also included some areas of scrub-shrub wetland. A paired plot was completed for the emergent and forested wetlands delineated on the parcel. Table 1 contains the Longitude and Latitude for each paired plot. Emergent and forested communities were similar throughout the entire survey area.

TABLE 1. USACE SAMPLE PLOT LOCATIONS.

WETLAND ID	USACE PLOT	LONGITUDE	LATITUDE		
SC-65	Upland 1	42° 44′ 57.186 " N	74° 24' 3.911" W		
SC-65	Wetland 1	42° 44′ 57.915 " N	74° 24′ 3.911″ W		
SC-65	Upland 2	Position data unavailable			
SC-65	Wetland 2	Position data	unavanable		

HYDROLOGY

The wetlands on this site are located at the headwaters of Cripple Brook Creek which is fed by a large wetland adjacent to the property. Open water, emergent, scrub shrub, and forested wetlands result upstream from beaver activity on the property. In general wetlands on the site exhibit an elevated water table (generally at 12") with saturation observed at 3"below the soil surface. In most locations oxidized rhizospheres are present as well as drainage patterns and water staining.

VEGETATION

Vegetation in the wetlands is dominated by a mix of native (*e.g.*, *Spiraea*, soft rush, wool grass, blue vervain, red osier dogwood) and invasive (*e.g.*, reed canary grass and buckthorn) species. Approximately 40 percent of the land cover is still forested with a mixture of softwoods and hardwoods. Photo 1 is a representative view of the PEM, PSS, and PFO wetlands surrounding the beaver pond. Forested wetlands on the site include a hemlock dominated wetland with high degrees of microhabitat features including pit and mound topography (Photo 2). Ground layer vegetation within these areas is limited as a result of dense canopy. Emergent wetlands are dominated by soft rush, shallow sedge, tussock sedge, and reed canary grass.

TABLE 2. DOMINANT VEGETATION.

_			INDICATOR
SCIENTIFIC NAME	COMMON NAME	STRATUM	STATUS
Acer saccharum	Sugar maple	Tree	FACU
Carex lurida	Shallow sedge	Herb	OBL
Carex stricta	Tussock sedge	Herb	OBL
Euthamia graminifolia	Flat-top goldentop	Herb	FAC
Fagus grandifolia	American beech	Shrub	FACU
Festuca sp.	Fescue	Herb	-
Juncus effusus	Soft rush	Herb	OBL
Lonicera sp.	Honeysuckle	Shrub	-
Lysimachia nummularia	Moneywort	Herb	FACW
Onoclea sensibilis	Sensitive fern	Herb	FACW
Osmunda cinnamomea	Cinnamon fern	Herb	FACW
Ostrya virginiana	American hophornbeam	Tree	FACU
Phalaris arundinacea	Reed canary grass	Herb	FACW
Quercus rubra	Northern red oak	Shrub/tree	FACU
Solidago sp.	Goldenrod	Herb	-
Tsuga canadensis	Eastern hemlock	Tree	FACU

SOILS

The soils in this area consist of Burdett and Erie channery silt loams (somewhat poorly drained, 3 to 8 percent slopes), Volusia, Morris, and Erie very stony soils (somewhat poorly drained, 0 to 8 percent slopes), Lyons and Ilion very stony soils (poorly drained, 0 to 15 percent slopes), and Madalin silt loam, over till. Hydric soils indicators within delineated wetlands included soils with both dark surfaces (S7) and depleted matrices (F3). Soils were generally fine textured (silt/clay) with low chroma matrix (5/2) and redox concentrations.

FUNCTIONS AND SERVICES

The primary function of the wetlands at this site is wildlife habitat. The large, continuous wetlands and presence of undisturbed uplands make the area ideal wildlife habitat. Species which require both wetland and upland habitats (e.g., mole salamanders and wood frogs) will have access to breeding, foraging and overwintering habitat. Forested areas dominated by eastern hemlock and mast-crop trees like oaks provide excellent habitat for several species. Forest interior birds such as Ovenbird and Wood Thrush will ultimately benefit from the eventual increase in forest interior habitat; in the short term, species that use successional habitat, such as Savannah Sparrow, Woodcock and Bluebird, will benefit. The open water beaver ponds and emergent wetlands provide a water source for deer, turkey, and bear. Migratory and aquatic birds can use this area for nesting, resting, and feeding.

This site occurs in the upper portion of the watershed and provides flood flow attenuation by preserving the existing wetland vegetation, creating additional wetland area, and allowing cleared fields to return to natural succession. The presence of longer retention times resulting from lower flows and diverse wetland vegetation, in combination with the poorly draining soils,

provide excellent water quality improvement functions for nutrient removal and sediment retention. In addition the fringe wetlands with dense vegetation associated with Cripplebush Creek provide important bank stabilization and flood flow retention functions and aid in preventing erosion or increases in sedimentation.

PHOTOGRAPH 1. BEAVER POND SURROUNDED BY PEM, PSS, AND PFO WETLANDS.

PHOTOGRAPH 2. REPRESENTATIVE FORESTED WETLAND INTERIOR.

DISCUSSION

Overall the wetlands on the site are in good condition, despite the presence of some invasive species within and along the periphery of the existing wetlands. The wetland is hydrologically connected to NYDEC wetland C-13. The presence of historically agricultural activity (annual hay cutting) provides an excellent opportunity for wetland enhancement of emergent portions of the wetland which are now dominated by reed canary grass.

REFERENCES

- U.S. Army Corps of Engineers (USACE). January 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region (Ver. 2.0).
 U.S. Army Corps of Engineers. Vicksburg, MS. No. ERDC/EL TR-12-1. 176 Pp.
- U.S. Army Corps of Engineers (USACE). 1987. Corps of Engineers Wetland Delineation Manual. U.S. Army Corps of Engineers. 143 pp.
- USACE. 2001. The Highway Methodology Workbook. U.S. Army Corps of Engineers New England District. 29 pp. NAEEP-360-1-30a.

ATTACHMENT A USACE DATA SHEETS

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region Project/Site: SC-65 City/County: Schoharie Sampling Date: 11/12/13 State: V Sampling Point: SC-65 WET Applicant/Owner: Constitution Section, Township, Range: Stoansuil Investigator(s): Subregion (LRR or MLRA): Mid attantiz Lat: Long: Long: Datum: NAD 1985 NWI classification: PEM Are climatic / hydrologic conditions on the site typical for this time of year? Yes _____ No ____ (If no, explain in Remarks.) Are Vegetation _____, Soil _____, or Hydrology _____ significantly disturbed? Are "Normal Circumstances" present? Yes _____ No _____ ___, Soil _____, or Hydrology _____ naturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Is the Sampled Area Hydrophytic Vegetation Present? Yes No within a Wetland? Hydric Soil Present? Wetland Hydrology Present? Remarks: (Explain alternative procedures here or in a separate report.) HATFIETD **HYDROLOGY** Wetland Hydrology Indicators: Secondary Indicators (minimum of two required) Primary Indicators (minimum of one is required; check all that apply) __ Surface Soil Cracks (B6) __ Surface Water (A1) ___ Drainage Patterns (B10) ___ Water-Stained Leaves (B9) ___ Aquatic Fauna (B13) __ Moss Trim Lines (B16) High Water Table (A2) ___ Saturation (A3) ___ Marl Deposits (B15) ___ Dry-Season Water Table (C2) ___ Water Marks (B1) ___ Hydrogen Sulfide Odor (C1) ___ Crayfish Burrows (C8) __ Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) ___ Saturation Visible on Aerial Imagery (C9) __ Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) Algal Mat or Crust (B4) ___ Recent Iron Reduction in Tilled Soils (C6) __ Geomorphic Position (D2) ___ Thin Muck Surface (C7) ___ Shallow Aquitard (D3) Iron Deposits (B5) ___ Microtopographic Relief (D4) __ Inundation Visible on Aerial Imagery (B7) __ Other (Explain in Remarks) Sparsely Vegetated Concave Surface (B8) _ FAC-Neutral Test (D5) Field Observations: Yes _____ No ____ Depth (inches): ___ Surface Water Present? Yes ____ No ____ Depth (inches): ___12 '1 Water Table Present? Yes ____ No ____ Depth (inches): ___ 3 '(Wetland Hydrology Present? Yes _____ No ___ Saturation Present? (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks: Beaver pono / WETMEADOW

	Matrix Color (moist)	%	Color (moist)	Feature:	Tγpe¹	Loc²	Texture	Remarks
-9"	104R 3/1						BI	
311-14"		85	104R4/8	15	C	PL	5L-A	L
						-	× 4	
		<u> </u>		-				
		_						
Type: C=Co ydric Soil Ir		etion, RM=	Reduced Matrix, MS	=Masked	Sand Gr	ains.		PL=Pore Lining, M=Matrix. for Problematic Hydric Soils ³ :
Histosol (Histic Epi Black His Hydroger Stratified Depleted Thick Dar Sandy Mi Sandy Gl Sandy Re Stripped	(A1) ipedon (A2) stic (A3) n Sulfide (A4) Layers (A5) Below Dark Surface rk Surface (A12) ucky Mineral (S1) leyed Matrix (S4)		Polyvalue Below MLRA 149B) Thin Dark Surfar Loamy Mucky M Loamy Gleyed M Depleted Matrix Redox Dark Sur Depleted Dark S Redox Depressi	ce (S9) (L lineral (F ² //atrix (F2 (F3) face (F6) surface (F	_RR R, M 1) (LRR K)	LRA 149B	2 cm M Coast F) 5 cm M Dark St Polyval Thin Da Iron-Ma Piedmo Mesic S Red Pa Very SP	uck (A10) (LRR K, L, MLRA 149B) Prairie Redox (A16) (LRR K, L, R) ucky Peat or Peat (S3) (LRR K, L, R) urface (S7) (LRR K, L) ue Below Surface (S8) (LRR K, L) urk Surface (S9) (LRR K, L) unganese Masses (F12) (LRR K, L, R) unt Floodplain Soils (F19) (MLRA 149B) prodic (TA6) (MLRA 144A, 145, 149B) rent Material (F21) hallow Dark Surface (TF12) Explain in Remarks)
		on and we	tland hydrology must	be prese	ent, unles:	disturbed	or problematic.	
Type:	ayer (if observed):							
Depth (incl	hes):		_				Hydric Soil I	Present? YesNo
lemarks:							1	

Tana Stratium (Distrains)	Absolute		Dominance Test worksheet:
Tree Stratum (Plot size:)		Species? Status	Number of Dominant Species
1.			That Are OBL, FACW, or FAC: (A)
2			Total Number of Dominant
3			Species Across All Strata: (B)
4.			Percent of Dominant Species That Are ORL FACW or FAC: (A/R)
5			That Are OBL, FACW, or FAC: (A/B)
6			Prevalence Index worksheet:
7			Total % Cover of: Multiply by:
		= Total Cover	OBL species x 1 =
Sapling/Shrub Stratum (Plot size:)			FACW species x 2 =
			FAC species x 3 =
1			FACU species x 4 =
2			UPL species x 5 =
3			Column Totals: (A) (B)
4			
5			Prevalence Index = B/A =
6		a	Hydrophytic Vegetation Indicators:
7			1 - Rapid Test for Hydrophytic Vegetation
		= Total Cover	2 - Dominance Test is >50%
Herb Stratum (Plot size:)			3 - Prevalence Index is ≤3.0 ¹
1. Juncus effusus	15.0	405	4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
2. Carex lurida			Problematic Hydrophytic Vegetation¹ (Explain)
3. carex stricta			
4. Phalakis anndinacea			¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
songclea sensibilis		V	
	-		Definitions of Vegetation Strata:
6			Tree – Woody plants 3 in. (7.6 cm) or more in diameter
7			at breast height (DBH), regardless of height.
8			Sapling/shrub – Woody plants less than 3 in. DBH
9			and greater than or equal to 3.28 ft (1 m) tall.
10.			Herb - All herbaceous (non-woody) plants, regardless
11			of size, and woody plants less than 3.28 ft tall.
12			Woody vines - All woody vines greater than 3.28 ft in
		= Total Cover	height.
Woody Vine Stratum (Plot size:)	-		
1			
	-		
2			
3	-:		Hydrophytic
4	,		Vegetation Present? Yes No
		= Total Cover	
Remarks: (Include photo numbers here or on a separate	sheet.)		

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: SC - 65	City/County: 5	chohapic	Sampling Date: 11/2/13	
Applicant/Owner: Constitution		State:	Sampling Point: SC-65 UP	
			Me	
			Slope (%): 3-8//	
Subregion (LRR or MLRA): MIO ATLANTICATE				
Soil Map Unit Name:				
Are climatic / hydrologic conditions on the site typical for this time				
Are Vegetation, Soil, or Hydrology signifi				
Are Vegetation, Soil, or Hydrology natura		(If needed, explain any answe		
SUMMARY OF FINDINGS – Attach site map sho	wing sampling p	oint locations, transects	s, important features, etc.	
Hydrophytic Vegetation Present? Yes No Westland Hydrology Present? Yes No Remarks: (Explain alternative procedures here or in a separate	within a If yes, or	ampled Area Wetland? Yes ational Wetland Site ID:	No	
HYDROLOGY				
Wetland Hydrology Indicators:		Secondary Indic	ators (minimum of two required)	
Primary Indicators (minimum of one is required; check all that a	(vlagi	Surface Soil		
	ained Leaves (B9)		atterns (B10)	
	auna (B13)	Moss Trim L	` '	
	osits (B15)	Iwoss Him Ellies (DT0) Dry-Season Water Table (C2)		
Water Marks (B1) Hydroger	Sulfide Odor (C1)	Crayfish Bu	rrows (C8)	
Sediment Deposits (B2) Oxidized	Rhizospheres on Livir	g Roots (C3) Saturation \	/isible on Aerial Imagery (C9)	
Drift Deposits (B3) Presence	of Reduced Iron (C4)	Stunted or S	Stressed Plants (D1)	
Algal Mat or Crust (B4) Recent Ir	on Reduction in Tilled	Soils (C6) Geomorphic	Position (D2)	
Iron Deposits (B5) Thin Muc	k Surface (C7)	Shallow Aqu	uitard (D3)	
Inundation Visible on Aerial Imagery (B7) Other (Ex	plain in Remarks)	Microtopogr	aphic Relief (D4)	
Sparsely Vegetated Concave Surface (B8)		FAC-Neutra	I Test (D5)	
Field Observations:				
Surface Water Present? Yes No Depth (ii	nches):	- 8		
Water Table Present? Yes No Depth (i			TO THE SEC	
Saturation Present? Yes No Depth (includes capillary fringe)	nches):	Wetland Hydrology Prese	nt? Yes No	
Describe Recorded Data (stream gauge, monitoring well, aerial	photos, previous insp	ections), if available:		
D				
Remarks:				

Tree Stratum (Plot size:)	Absolute Dominant Indicator % Cover Species? Status	Dominance Test worksheet:
1		Number of Dominant Species That Are OBL, FACW, or FAC: (A)
2		
3.,		Total Number of Dominant Species Across All Strata: (B)
4		Percent of Dominant Species
5		That Are OBL, FACW, or FAC: (A/B)
6.		Providence to describe the second sec
7		Prevalence Index worksheet: Total % Cover of: Multiply by:
	= Total Cover	OBL species x 1 =
Sapling/Shrub Stratum (Plot size:)		FACW species x 2 =
1		FAC species x 3 =
2.		FACU species x 4 =
		UPL species x 5 =
3		Column Totals: (A) (B)
5.		Prevalence Index = B/A =
5 6		Hydrophytic Vegetation Indicators:
7		1 - Rapid Test for Hydrophytic Vegetation
		2 - Dominance Test is >50%
Harb Charters (Distration	= Total Cover	3 - Prevalence Index is ≤3.0¹
Herb Stratum (Plot size:) 1. Phalaett awndinacea	OF A MAC	4 - Morphological Adaptations (Provide supporting
2 Fesco see		data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation ¹ (Explain)
4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -		Problematic Hydrophytic Vegetation (Explain)
3		¹ Indicators of hydric soil and wetland hydrology must
4		be present, unless disturbed or problematic.
5		Definitions of Vegetation Strata:
6		Tree – Woody plants 3 in. (7.6 cm) or more in diameter
7		at breast height (DBH), regardless of height.
8		Sapling/shrub – Woody plants less than 3 in. DBH
9	· · · · · · · · · · · · · · · · · · ·	and greater than or equal to 3.28 ft (1 m) tall.
10.		Herb - All herbaceous (non-woody) plants, regardless
11,:		of size, and woody plants less than 3.28 ft tall.
12		Woody vines – All woody vines greater than 3.28 ft in
	= Total Cover	height.
Woody Vine Stratum (Plot size:)		
1.		
2		
3		Hydrophytic
4		Vegetation
	= Total Cover	Present? Yes No
Remarks: (Include photo numbers here or on a separate s		
Hay FILTD - NO HIDRIL Soil		
9		

Sampling Point: SC-65 upland (

Profile Description: (Describe to the dept				or confirm	n the absence	of indicators.)
Depth Matrix (inches) Color (moist) %	Color (moist)	ox Feature:	Type ¹	Loc ²	Texture	Remarks
0-8" 1042314					fsc	
311-1611 104R 5/4					CI	
10925/4					400	
<u> </u>						
						/
¹ Type: C=Concentration, D=Depletion, RM=	Reduced Matrix M	S=Masked	Sand Gra		² l ocation:	PL=Pore Lining, M=Matrix.
Hydric Soil Indicators:	reduced Matrix, M	0-Masked	Janu Gra	11113.		for Problematic Hydric Soils ³ :
Histosol (A1)	Polyvalue Belo	w Surface	(S8) (LRF	RR,		uck (A10) (LRR K, L, MLRA 149B)
Histic Epipedon (A2)	MLRA 149B	,				Prairie Redox (A16) (LRR K, L, R)
Black Histic (A3)	Thin Dark Surfa					ucky Peat or Peat (S3) (LRR K, L, R)
Hydrogen Sulfide (A4) Stratified Layers (A5)	Loamy Mucky I Loamy Gleyed			, L)		urface (S7) (LRR K, L) ue Below Surface (S8) (LRR K, L)
Depleted Below Dark Surface (A11)	Loamy Gleyeu Depleted Matri:		,			irk Surface (S9) (LRR K, L)
Thick Dark Surface (A12)	Redox Dark Su					nganese Masses (F12) (LRR K, L, R)
Sandy Mucky Mineral (S1)	Depleted Dark		7)			nt Floodplain Soils (F19) (MLRA 149B)
Sandy Gleyed Matrix (S4)	Redox Depress	sions (F8)				Spodic (TA6) (MLRA 144A, 145, 149B)
Sandy Redox (S5) Stripped Matrix (S6)						rent Material (F21)
Stripped Matrix (36) Dark Surface (S7) (LRR R, MLRA 149B))					nallow Dark Surface (TF12) Explain in Remarks)
	,				00. (- April III I Comanie
³ Indicators of hydrophytic vegetation and wet	land hydrology mu	st be prese	nt, unless	disturbed	or problematic.	
Restrictive Layer (if observed):						
Туре:						
Depth (inches):					Hydric Soil F	Present? Yes No
Remarks:						

ATTACHMENT B

FUNCTIONS AND SERVICES

Wetland Function-Value Evaluation Form

					Wetland I.D
Total area of wetland Human made?	Is wetland	part of a wildlife corrido	or?	or a "habitat island"?	Latitude Longitude
Adjacent land use		Distance to nearest	roadway or	other development	Prepared by: Date
Dominant wetland systems present		Contiguous undeve	eloped buffe	er zone present	Wetland Impact: TypeArea
Is the wetland a separate hydraulic system? How many tributaries contribute to the wetland?				-	Office Field
Function/Value	Suitability Y N	Rationale (Reference #)*	Princi _l Functi	oal on(s)/Value(s)	Corps manual wetland delineation completed? Y N Comments
Groundwater Recharge/Discharge					
Floodflow Alteration					
Fish and Shellfish Habitat					
Sediment/Toxicant Retention					
Nutrient Removal					
→ Production Export					
Sediment/Shoreline Stabilization					
₩ Wildlife Habitat					
Recreation					
Educational/Scientific Value					
★ Uniqueness/Heritage					
Visual Quality/Aesthetics					
ES Endangered Species Habitat					
Other					

Notes:

WETLAND HYDROLOGY ANALYSIS

SITE ID: SC-65

SITE NAME: Beckers Corners Road Property

Location: Colesville, Broome County, New York

WATERSHED: Schoharie – 020200051

SITE TYPE: Wetland Mitigation

LANDOWNER: Frank T. Price, III

The following is a summary of the hydrology at the SC-65 property for wetland mitigation relating to the wetland disturbance along the Constitution Pipeline corridor. Kleinschmidt conducted several site visits to evaluate the existing and proposed wetlands and this memorandum summarizes the hydrologic conditions that assisted in the final design.

GROUNDWATER

Soil boring and soil pit tests were conducted at SC-65 to investigate soil characteristics and hydrology. In areas of proposed wetland creation, redoximorphic features (indicative of saturated soils during at least part of the year) were found approximately 1 ft below ground surface. Elevations of redoximorphic features range between 1164.2' to 1174.4' across the site. The groundwater table was encountered between 0.7' and 1.0' below ground surface in the proposed grading area. These redoximorphic feature elevations and groundwater levels were used as a guide to determine the final grade for each proposed wetland type. The depth of proposed excavation in this area ranges from approximately 1.8' in the PEM wetland areas and 0.5' in the PEO wetland areas.

Excavation is also proposed in the existing wetland to the south of the proposed creation in order to enhance wetland functions in an existing field. Excavation will diversify topography by introducing a "pit and mound" land feature, balancing cut and fill throughout the area. Groundwater in this area is generally perched above a dense basal till layer, however the depth of excavation does not exceed the depth of the confining till layer.

To observe the trends in groundwater data, soil boring and soil pit test data for SC-65 was also analyzed using reference data observed over the past five years at a USGS well approximately 7.4 miles away. This analysis compared the reading at the USGS well on the day of the soil boring to the well's overall dataset, and was applied to the water level at the site observed through the soil boring and soil pit tests. This made it possible to normalize the range of water depths on the site to the USGS well data, providing a surrogate for on-site long-term data. Please see the attached graph and tables as an analysis of the surrogate year-round range of water levels on the site. Comparison with the long-term data validated the chosen depths of excavation and ensured groundwater can function as a viable primary source of hydrology for the site.

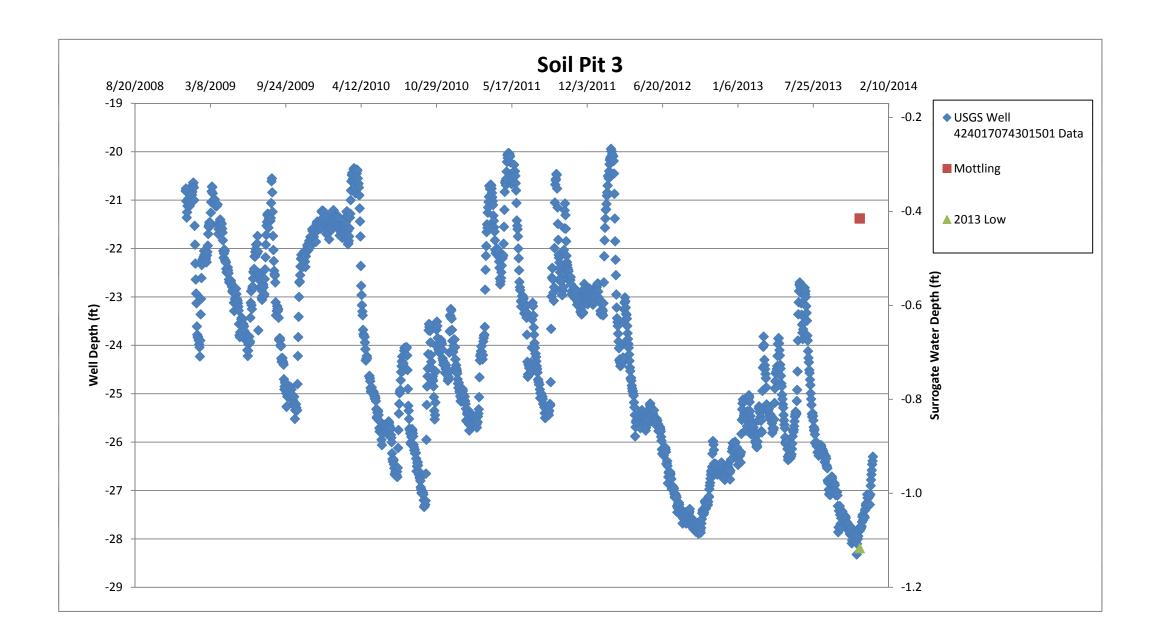
SURFACE RUNOFF

Runoff from the higher elevations to the northeast will provide a secondary source of hydrology. Approximately 2.25 acres of forested land drains to the proposed wetland creation area and it is expected that depressional features within the wetland will retain some of the overland flow. Therefore, surface runoff can be considered a secondary source of hydrology for the wetland.

Site Identifier: SC-65

Geotech: Haley and Aldrich

Drill Rig: GeoLogic NY, Inc./North Star Drilling


					Groundwater Depth					
					24-hr Reading at Boring BLS: Below Land Surface (Negative BLS is abo			ive BLS is above groun	d surface)	
				Approximate						
				Depth to						
				Observed	Standing Water		10th	25th	75th	90th
			Ground Surface	Mottled Soil (ft.	at Time of		percentile	Percentile	Percentile	Percentile
Boring ID	Longitude	Latitude	Elevation	BLS)	Boring (ft BLS)	Elevation (ft)	Depth (ft BLS)	Depth (ft BLS)	Depth (ft BLS)	Depth (ft BLS)
SC-65-1	74° 24' 6.756" W	42° 44' 55.854" N	1161.1	-	4.3		-2.3	-1.1	2.2	3.5
SC-65-2 ²	74° 24' 6.558" W	42° 44' 52.488" N	1135.2	-	-	-	-	-	-	-
SC-65-3	74° 24' 4.698" W	42° 44' 55.842" N	1161.1	-	4.4		-2.2	-1.0	2.3	3.6
SC-65-4 ²	74° 24' 5.100" W	42° 44' 52.458" N	1140.2	-	-	-	-	-	-	-


Notes:

- 1. Geotech reading collected on 31 October 2013.
- 2. Location of boring is currently outside of design and will not be considered in calculations
- 3. 10th-90th percentile water depths calculated based on a comparison of a same day reading at a nearby USGS well and its data set from the past 5 years

Ī							10th	25th	75th	90th
						Water depth at	percentile	percentile	percentile	percentile
					Distance from	time of survey	water depth	water depth	water depth	water depth
	USGS Well ID	Longitude	Latitude	Date	Project Site	(ft BLS)	(ft BLS)	(ft BLS)	(ft BLS)	(ft BLS)
	424017074301501	74°30'15.0"	42°40'16.9"	11/21/2013	7.4 miles	27.94	21.35	22.59	25.88	27.09
	424017074301501	74°30'15.0"	42°40'16.9"	12/10/2013	7.4 miles	27.31	21.35	22.59	25.88	27.09

	USGS Well	USGS Well	SC-65-1	SC-65-3	Soil Pit 3	Soil Pit 4
Mottling:	-21.35	-21.35	-	-	-0.9	-0.4
Measured Water Level:	-27.94	-27.31	-4.3	-4.4	-	-1
2013 Low:	-28.32	-28.32	-	-	-	-1.10
Date:	11/21/2013	12/10/2013	11/21/2013	11/21/2013	12/10/2013	12/10/2013

	DRAWING LIST
SHEET NUMBER	DESCRIPTION
1	COVER SHEET
2	GENERAL NOTES
3	EXISTING CONDITIONS
4	WETLANDS METES AND BOUNDS TABLES
5	DEMOLITION PLAN
6	SITE PLAN
7	SITE PLAN — S7
8	SITE PLAN - S8
9	SITE PLAN — S9
10	SITE PLAN — S10
11	SECTIONS
12	EASEMENT PLAN
13	CONSERVATION EASEMENT METES AND BOUNDS TABLES
14	PLANTING NOTES AND TABLES
15	PLANTING PLAN
16	DETAILS
17	EROSION AND SEDIMENT CONTROL DETAILS

OWNER: FRANK T. PRICE III

TAX PARCEL ID: 26.—1—27

ACREAGE OF PARCEL: 56.7 ACRES

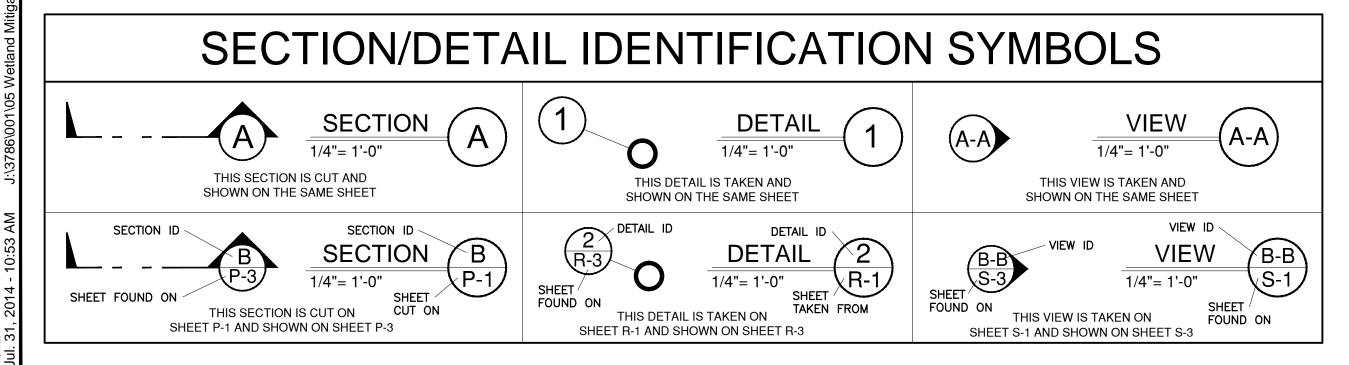
DISTURBED ACREAGE: 8.1 ACRES

ADDRESS: 364 BECKERS CORNERS ROAD

SLOANSVILLE, NY 12160

HUC 8: SCHOHARIE - 02020005

VICINITY MAP
(ELEVATIONS ARE IN METERS)



NOTES:

- 1. TOPOGRAPHIC AND PARCEL BOUNDARY SURVEY DATA BASED ON 2013/2014 SURVEY FROM MICHAEL BAKER CORPORATION. COORDINATES SHOWN ARE EXPRESSED IN US SURVEY FEET AND REFERENCED TO NORTH AMERICAN DATUM OF 1983 (NAD 83), UTM ZONE 18.
- 2. WETLAND BOUNDARIES BASED ON 2013/2014 DELINEATION BY KLEINSCHMIDT ASSOCIATES.

NOTES:

- 1. SECTIONS ARE ALPHABETICAL.
- 2. DETAILS ARE NUMERICAL.
- 3. VIEWS ARE DOUBLE ALPHABETICAL.

_								PIPELINE, LLC TIGATION
					SITE	SC-65: BE	CKERS	S CORNERS ROAD
					COVER SHEET			
-	-	-	-	-	Klein	schm	nidt (141 Main Street P.O. Box 650 Pittsfield, Maine 04967 Telephone: (207) 487-3328 Fax: (207) 487-3124
SERVICE SIGNATU ELECTRO PURPOS	Revision CUMENT IS A DRAFT VERSION PROVIDED FOR THE CONVENIENCE OF THE USER AND IS NOT AN INSTRUMENT OF E OF KLEINSCHMIDT ASSOCIATES UNLESS IT BEARS THE PROFESSIONAL ENGINEER'S STAMP AND ORIGINAL IRE. THIS DOCUMENT IS NOT A PRODUCT, AND TRANSFER OF A VERSION OF AN INSTRUMENT OF SERVICE BY ONLY MAD NOT DEEMED A SALE. THIS DOCUMENT MAY NOT BE ALTERED BY OTHERS OR USED FOR PROJECTS OR USES OTHER THAN THE PROJECT FOR WHICH IT WAS PREPARED, WITHOUT THE EXPRESS WRITTEN PERMISSION OF HAMIDT ASSOCIATES.	Date Designed DDW	Drawn Drawn DDW	Checked Checked TAK	Project No. 3786-001	Date Revised 7-31-2014	Drawing No.	www.KleinschmidtUSA.com

ACL DERHAM 8014-

GENERAL NOTES

- 1. SUBCONTRACTOR SHALL PERFORM ALL WORK IN ACCORDANCE WITH THESE DRAWINGS AND THE PROJECT SPECIFICATIONS.
- 2. IT IS THE RESPONSIBILITY OF THE SUBCONTRACTOR TO REVIEW ALL OF THE DRAWINGS, SPECIFICATIONS, AND REFERENCED DOCUMENTS ASSOCIATED WITH THE PROJECT PRIOR TO THE INITIATION OF CONSTRUCTION. SHOULD THE SUBCONTRACTOR FIND ANY CONFLICT WITH THE DOCUMENTS, IT IS THE SUBCONTRACTOR'S RESPONSIBILITY TO NOTIFY KLEINSCHMIDT AND THE ENGINEER OF RECORD, IN WRITING, PRIOR TO THE START OF CONSTRUCTION. FAILURE BY THE SUBCONTRACTOR TO NOTIFY KLEINSCHMIDT AND THE ENGINEER OF RECORD SHALL CONSTITUTE ACCEPTANCE OF FULL RESPONSIBILITY BY THE SUBCONTRACTOR TO COMPLETE THE SCOPE OF WORK AS DEFINED BY THE DRAWINGS AND SPECIFICATIONS AND IN FULL COMPLIANCE WITH LOCAL REGULATIONS AND CODES.
- 3. IT IS THE RESPONSIBILITY OF THE SUBCONTRACTOR TO FULFILL ALL REQUIREMENTS OF THE CONTRACT AND ALL AMENDMENTS THERETO, INCLUDING BUT NOT LIMITED TO GENERAL CONDITIONS, SPECIAL CONDITIONS, TECHNICAL SPECIFICATIONS AND THESE DRAWINGS IN ORDER TO COMPLETE THIS PROJECT.
- ELEVATIONS SHOWN ON THE PLANS SHALL BE FIELD VERIFIED BY THE SUBCONTRACTOR PRIOR TO CONSTRUCTION. SUBCONTRACTOR SHALL NOTIFY KLEINSCHMIDT, IN WRITING, IF ANY DISCREPANCIES EXIST PRIOR TO PROCEEDING WITH THE CONSTRUCTION TO OBTAIN NECESSARY PLAN CHANGES. NO EXTRA COMPENSATION SHALL BE PAID TO THE SUBCONTRACTOR FOR WORK HAVING TO BE REDONE DUE TO ERRORS & OMISSIONS SHOWN ON THESE PLANS IF SUCH NOTIFICATION HAS NOT BEEN GIVEN. KLEINSCHMIDT RESERVES THE RIGHT TO MODIFY THESE PLANS.
- 5. SUBCONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, LAYOUT AND EXISTING CONDITIONS SHOWN PRIOR TO SHOP DRAWING SUBMITTAL, ORDERING MATERIAL, START OF FABRICATION, OR START OF CONSTRUCTION. SUBCONTRACTOR SHALL NOTIFY KLEINSCHMIDT OF DISCREPANCIES.
- 6. THE SUBCONTRACTOR SHALL BE FAMILIAR WITH ALL APPLICABLE FEDERAL, STATE, AND LOCAL APPROVALS AND PERMITS FOR THE PROJECT AND SHALL HAVE A COPY OF RELEVANT PLANS AND PERMITS ON SITE AT ALL TIMES. THE SUBCONTRACTOR SHALL NOT PROCEED WITH THEIR WORK UNTIL ALL RELEVANT PERMITS ARE OBTAINED.
- 7. THE SUBCONTRACTOR IS RESPONSIBLE FOR PROTECTING THE ENVIRONMENT.
- 8. SUBCONTRACTOR SHALL SCHEDULE WORK IN COOPERATION WITH THE OWNER AND KLEINSCHMIDT.
- 9. SUBCONTRACTOR SHALL PROVIDE SUBMITTALS AND RECEIVE KLEINSCHMIDT'S APPROVAL FOR ALL STRUCTURAL AND MISCELLANEOUS METAL ITEMS AND CONCRETE REINFORCEMENT PRIOR TO FABRICATION.
- 10. SUBCONTRACTOR SHALL CLEAN UP ANY SPILLS OR DEBRIS CAUSED BY CONSTRUCTION.
- 11. SUBCONTRACTOR SHALL REPAIR ANY PORTIONS OF THE SITE THAT ARE DAMAGED DURING CONSTRUCTION, AND PERFORM LANDSCAPING AND SITE REMEDIATION AS NECESSARY TO LEAVE THE WORK AREA AS CLOSE TO ORIGINAL CONDITION AS POSSIBLE.
- 12. ALL WORK SHALL BE CONDUCTED PER THE SOIL EROSION AND SEDIMENT CONTROL PLAN.
- 13. ALL WORK SHALL BE PERFORMED IN ACCORDANCE WITH ALL LOCAL, STATE, AND FEDERAL REGULATIONS.
- 14. THE SUBCONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK. THE SUBCONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE MEANS, METHODS, TECHNIQUE AND PROCEDURE OF CONSTRUCTION; INCLUDING, BUT NOT LIMITED TO, BRACING OF THE WORK AS REQUIRED TO PROTECT THE WORK UNTIL THE PROJECT IS COMPLETE. SUBCONTRACTOR SHALL NOT PLACE EQUIPMENT OR MATERIALS OUTSIDE OF THE LIMIT OF WORK SHOWN ON THE PLANS WITHOUT WRITTEN CONSENT FROM KLEINSCHMIDT AND THE CONSERVATION DISTRICT.
- 15. ATTENTION ALL SUBCONTRACTORS: LOCATIONS OF ALL EXISTING UTILITIES SHOWN HEREON HAVE BEEN DEVELOPED FROM ABOVE—GROUND INSPECTION OF THE SITE. COMPLETENESS AND ACCURACY OF TYPE, SIZE, DEPTH OR HORIZONTAL LOCATION OF UNDERGROUND FACILITIES OR STRUCTURES CANNOT BE GUARANTEED. CONTRACTORS MUST VERIFY LOCATION AND DEPTH OF ALL UNDERGROUND UTILITIES. SEE STATE SPECIFIC REQUIREMENTS. THIS PAGE.
- 16. THE SUBCONTRACTOR SHALL BE RESPONSIBLE FOR AND PROVIDE ALL CONSTRUCTION STAKEOUT AND SURVEY WORK NECESSARY FOR THEIR WORK, UNLESS ARRANGED OTHERWISE WITH KLEINSCHMIDT. ANY DISCREPANCIES FOUND DURING THE COURSE OF THE SURVEY WORK SHALL BE BROUGHT TO THE IMMEDIATE ATTENTION OF KLEINSCHMIDT.
- 17. THE SUBCONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY PRECAUTIONS AND PROGRAMS IN CONNECTION WITH THE WORK.
- 18. THE SUBCONTRACTOR SHALL BE RESPONSIBLE TO SECURE ALL MATERIAL, EQUIPMENT, SUPPLIES, ETC., STORED AT THE SITE.
- 19. THE SUBCONTRACTOR SHALL BE RESPONSIBLE TO CLEAN PROJECT SITE OF ALL WASTE, FILL, DEBRIS, ETC. DAILY AND PRIOR TO LEAVING THE SITE.
- 20. ANY DAMAGE TO THE UTILITIES SHALL BE THE SOLE RESPONSIBILITY OF THE SUBCONTRACTOR, AND ALL COST FOR REPAIRS SHALL BE BORNE BY THE SUBCONTRACTOR.
- 21. NO TREES SHALL BE DISTURBED UNLESS INDICATED ON THE PLANS THAT THEY ARE TO BE REMOVED.
- 22. NO WETLANDS SHALL BE DISTURBED UNLESS INDICATED ON THE PLANS AND ALL APPROPRIATE PERMITS ARE IN PLACE.
- 23. THE SUBCONTRACTOR SHALL COMPLY WITH ALL CONDITIONS CONTAINED IN RELEVANT PERMITS ISSUED FOR THIS PROJECT.

- 24. SURVEY DATA ARE BASED ON TOPOGRAPHIC SURVEY BY MICHAEL BAKER CORPORATION. COORDINATES SHOWN ARE EXPRESSED IN U.S. SURVEY FEET AND REFERENCED TO THE NORTH AMERICAN DATUM OF 1983 (NAD 83), UTM ZONE 18.
- 25. WETLAND BOUNDARIES BASED ON 2013/2014 DELINEATION BY KLEINSCHMIDT. WETLANDS WERE DELINEATED BASED ON THE USACE 2012 REGIONAL SUPPLEMENT TO THE CORPS OF ENGINEERS WETLAND DELINEATION MANUAL: NORTHCENTRAL AND NORTHEAST REGION (VERSION 2.0).
- 26. THÉ SUBCONTRACTOR SHALL BE ADVISED THAT THE PROJECT MAY BE LOCATED IN AN AREA PRONE TO FLOODING AND SEVERE WEATHER. THE SUBCONTRACTOR SHALL TAKE NECESSARY PRECAUTIONS TO PROTECT THE PROJECT WHILE UNDER CONSTRUCTION, WHICH MAY INCLUDE SEQUENCING THE PROJECT TO PROTECT TEMPORARY AND PERMANENT STRUCTURES. THIS INCLUDES, BUT IS NOT LIMITED TO, PROTECTION FROM STORMS, FLOODS, WIND, AND RECREATIONAL USERS. THE SUBCONTRACTOR IS SOLELY RESPONSIBLE FOR THE PROTECTION OF THE PROJECT SITE, TEMPORARY FACILITIES, FALSEWORK, EQUIPMENT, PERSONNEL, WORK, MATERIALS, AND OTHER PROPERTIES, THE PUBLIC, OR INDUSTRY.
- 27. EVERY SUBCONTRACTOR SHALL COOPERATE WITH AND MAKE ALLOWANCES FOR OTHER SUBCONTRACTORS.
- 28. SUBCONTRACTOR SHALL PARK IN DESIGNATED AREAS ONLY.
- 29. TO THE GREATEST EXTENT POSSIBLE ALL TRAFFIC SHALL REMAIN ON DESIGNATED TRAVELWAYS. ANY DAMAGE TO TURF OR FIELDS SHALL BE REPORTED AND REPAIRED IMMEDIATELY BY THE SUBCONTRACTOR.
- 30. ALL SUBCONTRACTORS SHALL SUBMIT THE FOLLOWING FOR APPROVAL:
 PHASING AND SEQUENCING PLAN: SUBMIT PLAN NO LESS THAN 14
 DAYS PRIOR TO COMMENCING WORK
- DAYS PRIOR TO COMMENCING WORK.

 POLLUTION PREVENTION AND CONTROL PLAN: SUBMIT SITE SPECIFIC
- PLAN NO LESS THAN 14 DAYS PRIOR TO COMMENCING WORK.

 SITE SPECIFIC SAFETY PLAN: SUBMIT PLAN NO LESS THAN 14 DAYS PRIOR TO COMMENCING WORK.
- 30. ALL EQUIPMENT IS TO BE IN COMPLIANCE WITH ALL OSHA AND DOSH SAFETY SPECIFICATIONS INCLUDING, FUNCTIONING BACKUP ALARMS AND MIRRORS FOR SAFE BACKING.
- 31. ALL HEAVY EQUIPMENT IS TO BE PROPERLY MAINTAINED SUCH THAT ALL ACCESSORIES ARE FUNCTIONING ACCORDING TO THE MANUFACTURER'S SPECIFICATIONS.
- 32. THE SUBCONTRACTOR SHALL IMMEDIATELY NOTIFY KLEINSCHMIDT AND CONSTRUCTION MANAGER OF ANY UNINTENTIONAL RELEASE OF ANY CHEMICAL (INCLUDING BUT NOT LIMITED TO, DIESEL FUEL, HYDRAULIC OIL, HERBICIDE) WHILE ON THE PROJECT SITE AND SHALL IMMEDIATELY TAKE MEASURES TO CONTAIN AND CLEAN UP SUCH SPILLED MATERIALS, INCLUDING THE REMOVAL OF CONTAMINATED SOIL. THE SUBCONTRACTOR SHALL, AT ALL TIMES, HAVE EQUIPMENT AND SUPPLIES READILY AVAILABLE TO ADEQUATELY CONTROL AND CLEAN UP ANY CHEMICAL SPILLS. THE SUBCONTRACTOR SHALL ALSO BE RESPONSIBLE FOR NOTIFICATION OF ALL APPLICABLE AGENCIES IN THE EVENT OF AN UNCONTROLLED CHEMICAL RELEASE. THE SUBCONTRACTOR IS SOLEY RESPONSIBLE FOR ALL COSTS ASSOCIATED WITH THE SPILL, INCLUDING SITE CLEANUP, DISPOSAL OF MATERIAL, AND COSTS FOR DELAYS TO THE PROJECT SCHEDULE CAUSED BY THE SPILL.

NEW YORK GENERAL NOTES

- 1. THE SUBCONTRACTOR WILL BE RESPONSIBLE FOR CONDUCTING UNDERGROUND UTILITY CHECKS, IN ACCORDANCE WITH STATE REGULATIONS. THE SUBCONTRACTOR WILL BE RESPONSIBLE FOR COORDINATING WITH DIG SAFELY NEW YORK (1-800-962-7962) A MINIMUM OF THREE (3) FULL WORKING DAYS IN ADVANCE OF ANY DIGGING ACTIVITY. SHOULD ANY UTILITIES BE LOCATED THAT ARE IN CONFLICT WITH THE DESIGN, THE SUBCONTRACTOR SHALL IMMEDIATELY REPORT THESE CONFLICTS IN WRITING TO KLEINSCHMIDT.
- 2. ALL MATERIALS SHALL BE PROVIDED AND WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE NEW YORK STATE DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS UNLESS NOTED OTHERWISE.
- 3. ALL MATERIALS SHALL BE PROVIDED AND WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION REQUIREMENTS FOR SOIL AND EROSION PROTECTION.

EXCAVATION CONTRACTOR NOTES

- 1. EXCAVATION SUBCONTRACTOR IS RESPONSIBLE FOR ALL SHORING REQUIRED DURING EXCAVATION. THIS AND ALL OTHER SITE WORK MUST BE IN ACCORDANCE WITH CURRENT OSHA STANDARDS.
- 2. NO CONSTRUCTION OR FABRICATION SHALL BEGIN UNTIL THE EXCAVATION SUBCONTRACTOR THOROUGHLY REVIEWS AND UNDERSTANDS ALL PLANS AND OTHER DOCUMENTS BY ALL PERMITTING AUTHORITIES.
- 3. CONSERVATION DISTRICT EROSION AND SEDIMENT CONTROL ADEQUACY LETTER TO BE APPROVED PRIOR TO SITE DISTURBANCE, AS REQUIRED BY THE CONSERVATION DISTRICT.
- OF THE TREE OR RESTRICTED AREA PROTECTIVE FENCING, AS REQUIRED BY THESE PLANS.

 5. ANY SOLID WASTE FROM THE SITE SHALL BE DISPOSED OF BY

4. NO EARTH MOVING ACTIVITIES SHALL BEGIN PRIOR TO THE INSTALLATION

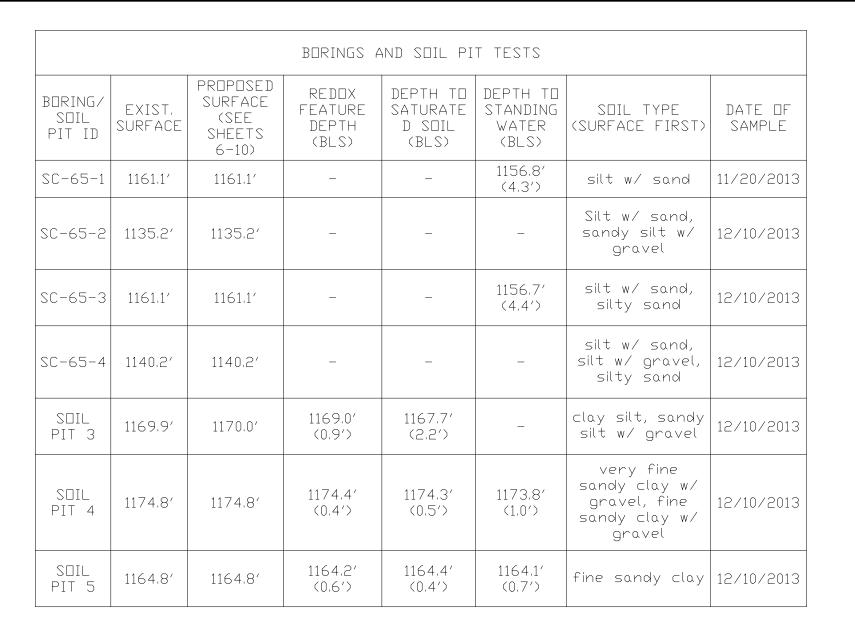
- EXCAVATION SUBCONTRACTOR IN ACCORDANCE WITH ALL LOCAL, STATE AND FEDERAL REGULATIONS.

 6. WATER THAT ACCUMULATES IN OPEN TRENCHES WILL BE COMPLETELY
- 6. WATER THAT ACCUMULATES IN OPEN TRENCHES WILL BE COMPLETELY REMOVED BY PUMPING BEFORE CONSTRUCTION AND/OR BACKFILLING BEGINS. WATER MUST BE PUMPED THROUGH A FILTER BAG ON TO A STABLE SURFACE OR INTO THE SEDIMENT BASIN. CONCRETE SHALL BE PLACED IN A CLEAN DRY TRENCH ONLY.

- 7. EXCAVATIONS OR TRENCHING WITHIN THE CLOSE PROXIMITY TO UNDERGROUND FACILITIES OR UTILITY POLES WILL REQUIRE PROTECTION TO PREVENT DAMAGE OR INTERRUPTION OF SERVICE. THE COST TO PROVIDE THE PROTECTION WILL BE BORNE BY THE EXCAVATION SUBCONTRACTOR.
- 8. COMPACTION IN FILL AREAS BENEATH ALL PROPOSED STRUCTURES SHOULD MEET ALL MANUFACTURER AND TOWNSHIP REQUIREMENTS AND BE EQUAL TO THE 98% MODIFIED PROCTOR DENSITY, AT A MINIMUM.
- 9. ALL CONCRETE UTILIZED ON SITE SHALL BE 4,000 PSI (MINIMUM 28 DAY COMPRESSIVE STRENGTH) WITH 5% AIR ENTRAINMENT, UNLESS OTHERWISE NOTED.

	SC	-65 Soil [Data				
						Restricti	ve Layer
Soil Symbol	Soil Name	Slope (%)	HSG	Frost Action	Kf (whole soil)	Depth to Fragipan (in)	Depth to Lithic Bedrock (in)
Al	Alluvial land		A/D	High	0.24	>78.7	N/A
BrB	Burdett and Erie channery silt loams	3-8	C/D	High	0.24	>78.7	N/A
BrC	Burdett and Erie channery silt loams	8-15	C/D	High	0.24	>78.7	N/A
IIC	llion and Lyons silt loams	3-15	C/D	High	0.28	>78.7	N/A
LyB	Lyons and Ilion very stony soils	0-8	B/D	High	0.28	>78.7	N/A
Ма	Madalin silt loam, over till		C/D	High	0.37	>78.7	N/A
MeE	Mardin and Culvers very stony soils	0-35	D	Moderate	0.24	22.0	N/A
NcA	NORWICH AND CHIPPEWA SOILS	0-3	D	HIGH	0.32	16.1	>78.7
NIC	Nunda and Langford channery silt loams	8-15	C/D	High	0.24	>78.7	N/A
NID	Nunda and Langford channery silt laoms	15-25	C/D	High	0.24	>78.7	N/A
VmC	Volusia, Morris, and Erie soils, very stony	0-15	D	High	0.24	16.9	N/A

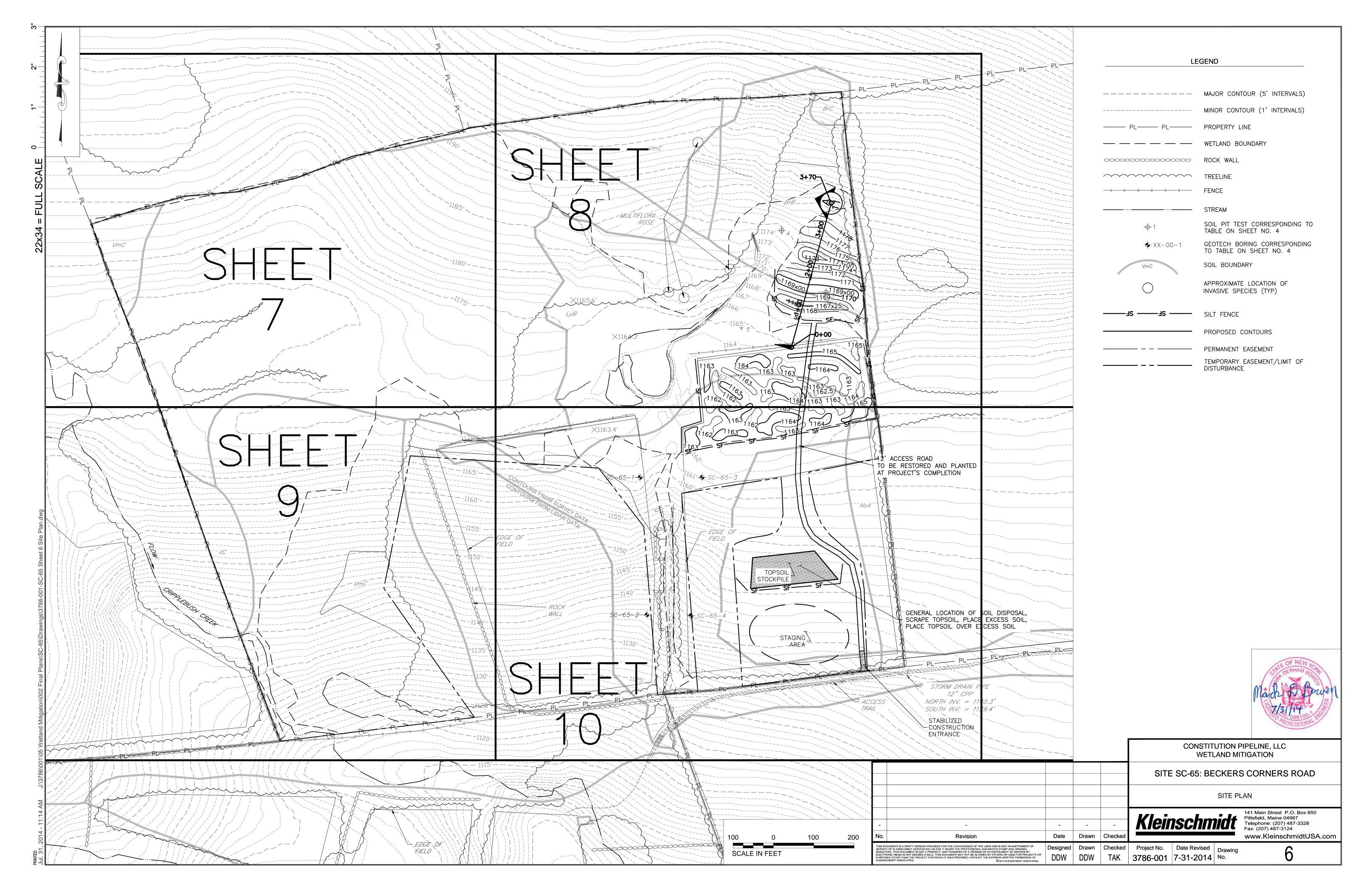
					CONSTITUTION PIPELINE, LLC WETLAND MITIGATION			
					SITE SC-65: BECKERS CORNERS ROAD			
					GENERAL NOTES			
1	-	-	-	-	**Telephone: (207) 487-3328 Fax: (207) 487-3124			
No.	Revision	Date	Drawn	Checked	www.KleinschmidtUSA.com			
SERVICE SIGNATU ELECTRO PURPOS	CUMENT IS A DRAFT VERSION PROVIDED FOR THE CONVENIENCE OF THE USER AND IS NOT AN INSTRUMENT OF COF KLEINSCHMIDT ASSOCIATES UNLESS IT BEARS THE PROFESSIONAL ENGINEER'S STAMP AND ORIGINAL IRE: THIS DOCUMENT IS NOT A PRODUCT. AND TRANSPER OF A VERSION OF AN INSTRUMENT OF SERVICE BY ONIC MEDIA IS NOT DEEMED A SALE. THIS DOCUMENT MAY NOT BE ALTERED BY OTHERS OR USED FOR PROJECTS OR SES OTHER THAN THE PROJECT FOR WHICH IT WAS PREPARED, WITHOUT THE EXPRESS WRITTE PREMISSION OF CHMIDT ASSOCIATES.	Designed DDW	Drawn DDW	Checked TAK	Project No. Date Revised Drawing No. 2			

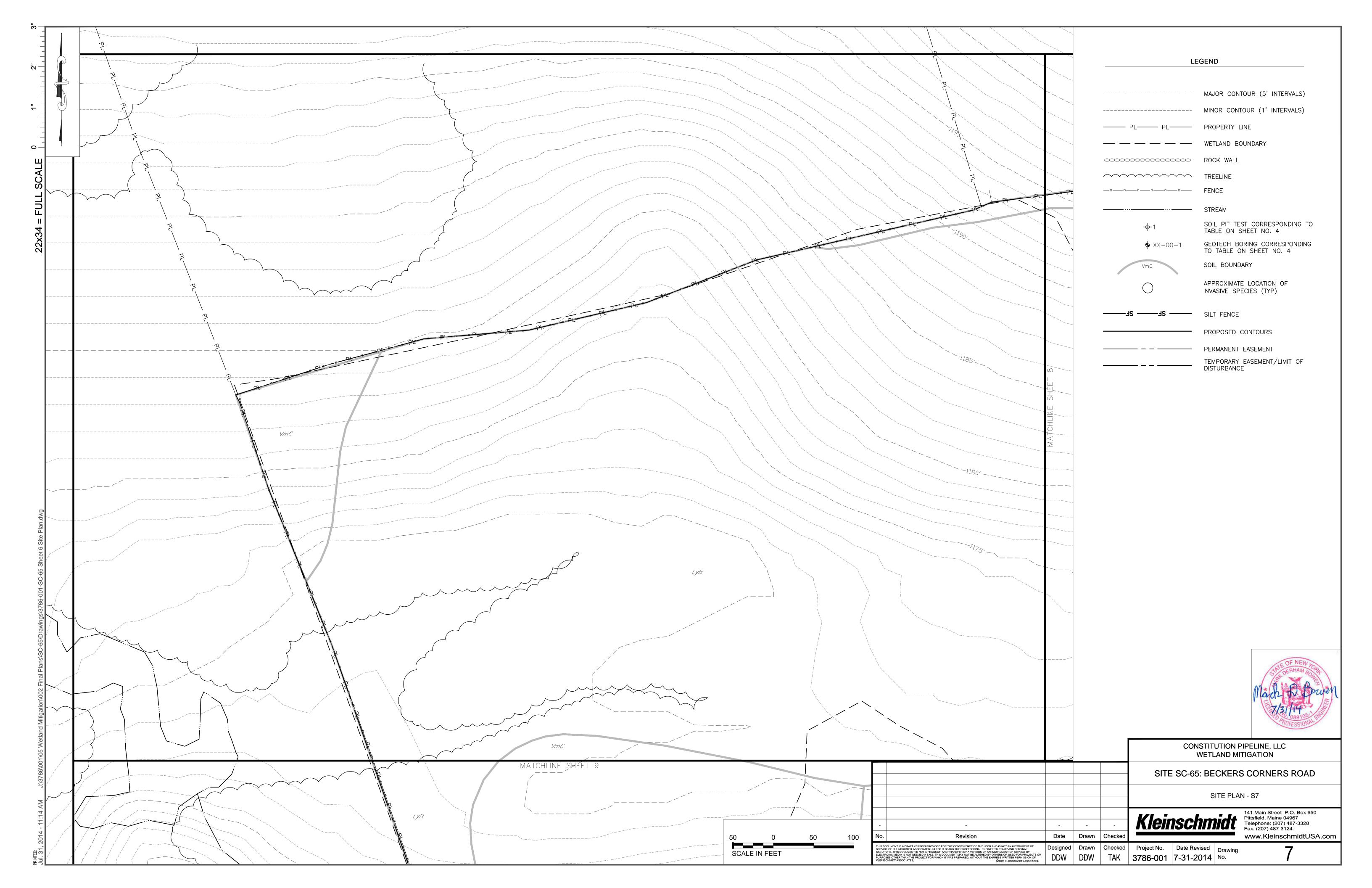

WETLAND METES AND BOUNDS TABLE Line # Length Direction 54.51 N52° 30' 58"W L2 51.13 N2° 59' 32"W *73.75* N65° 02' 23"W L4 31.90 N55° 09' 42"W L5 40.45 N55° 09' 42"W *53.31* L6 N4° 11' 08"W *L7 57.89* N15° 59' 45"E *30.48* S89° 55' 29"E L8 L9 N8° 39' 38"W 41.45 L10 *55.38* N84° 59' 10"W L11 50.58 S34° 23' 30"W L12 *43.65* S14° 56' 24"W L13 46.03 N61° 39' 40"W 49.05 N11° 21' 58"E L14 L15 *53.11* N36° 54' 17"W L16 46.67 N82° 16' 42"W L17 *50.97* N45° 48' 33"W L18 N27° 51' 51"W *47.73* L19 28.66 N64° 25' 08"W L20 26.00 N64° 25' 08"W

WETLAN	ID METES AI	ND BOUNDS TABLE
Line #	Length	Direction
L21	199.77	S79°06′48″W
L22	250.34	S71° 11' 13"W
L23	233.47	S77° 31′ 50″W
L24	255.84	S78° 00' 18"W
L25	57.58	S81° 16′ 44″W
L26	553.58	S19° 47' 07"E
L27	553.58	S19° 47' 07"E
L28	26.89	S83° 36' 54"E
L29	44.36	S18° 20' 01"E
L30	54.21	S3° 07' 37"E
L31	55.13	S27° 38' 46"E
L32	43.59	S20° 54' 51"E
L33	54.36	S25° 34' 51"E
L34	17.08	S51° 12' 09"W
L35	2.69	S21° 00' 23"E
L36	155.25	N82° 59' 34"E
L37	59.18	N74° 52' 35"W
L38	56.35	N82° 09' 25"W
L39	44.90	N32° 24' 06"W
L40	35.34	N52° 54' 43"E

WETLAN	D METES A	ND BOUNDS TABLE
Line #	Length	Direction
L41	41.06	N21° 14' 49"W
L42	55.28	N56° 50' 45"W
L43	68.21	N10° 14' 06"W
L44	46.37	N37° 46' 58"W
L45	34.43	N5° 54' 27 " E
L46	56.58	N4° 31' 50"E
L47	66.10	N30° 08' 49"E
L48	53.25	N35° 06' 59"E
L49	50.28	N13° 05' 49"E
L50	44.02	N27° 58' 17"E
L51	67.21	N17° 40′ 45″E
L52	<i>52.96</i>	N84° 10' 48"E
L53	44.08	S88° 30' 18"E
L54	<i>57.48</i>	N12° 43' 35"E
L55	68.16	N28° 00' 39"E
L56	67.28	N23° 35' 16"E
L57	65.65	N2° 20' 03"E
L58	77.26	N61° 21' 33"E
L59	54.85	S56° 26' 27 " E
L60	60.65	S62° 22' 05"E

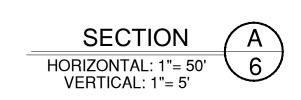
Line # Length Direction L61 53.74 \$42° 04' 16"E L62 58.68 \$9° 24' 19"E L63 65.79 \$89° 14' 39"E L64 67.74 \$75° 29' 21"E L65 52.04 \$34° 30' 31"E L66 41.20 \$N89° 47' 29"E L67 77.43 \$N1° 07' 02"E L68 51.99 \$N78° 47' 50"E L69 71.31 \$23° 33' 14"E L70 46.13 \$53° 57' 35"E L71 43.58 \$N53° 54' 58"E	
L62 58.68 S9° 24' 19"E L63 65.79 S89° 14' 39"E L64 67.74 S75° 29' 21"E L65 52.04 S34° 30' 31"E L66 41.20 N89° 47' 29"E L67 77.43 N1° 07' 02"E L68 51.99 N78° 47' 50"E L69 71.31 S23° 33' 14"E L70 46.13 S53° 57' 35"E	
L63 65.79 S89° 14' 39"E L64 67.74 S75° 29' 21"E L65 52.04 S34° 30' 31"E L66 41.20 N89° 47' 29"E L67 77.43 N1° 07' 02"E L68 51.99 N78° 47' 50"E L69 71.31 S23° 33' 14"E L70 46.13 S53° 57' 35"E	
L64 67.74 S75° 29' 21"E L65 52.04 S34° 30' 31"E L66 41.20 N89° 47' 29"E L67 77.43 N1° 07' 02"E L68 51.99 N78° 47' 50"E L69 71.31 S23° 33' 14"E L70 46.13 S53° 57' 35"E	
L65 52.04 S34° 30' 31"E L66 41.20 N89° 47' 29"E L67 77.43 N1° 07' 02"E L68 51.99 N78° 47' 50"E L69 71.31 S23° 33' 14"E L70 46.13 S53° 57' 35"E	
L66 41.20 N89° 47' 29"E L67 77.43 N1° 07' 02"E L68 51.99 N78° 47' 50"E L69 71.31 S23° 33' 14"E L70 46.13 S53° 57' 35"E	
L67 77.43 N1° 07' 02"E L68 51.99 N78° 47' 50"E L69 71.31 S23° 33' 14"E L70 46.13 S53° 57' 35"E	
L68 51.99 N78° 47' 50"E L69 71.31 S23° 33' 14"E L70 46.13 S53° 57' 35"E	
L69 71.31 S23° 33' 14"E L70 46.13 S53° 57' 35"E	
L70 46.13 S53° 57' 35"E	
171 1358 NEZ 64' 50"C	
L71 43.38 N33 34 38 E	
L72 57.04 N24° 31' 12"E	
L73 72.72 S63° 14' 36"E	
L74 73.46 S78° 47' 55"E	
L75 89.33 S26° 31' 07"W	
L76 65.13 S13° 23' 09"E	
L77 61.62 S12° 57' 47"E	
L78 47.34 S3° 54' 01"W	
L79 49.47 S5° 28' 28"W	
L80 45.53 S3° 11' 35"E	


WETLAN	ID METES A	ND BOUNDS TABLE
Line #	Length	Direction
L81	56.64	S6° 11′ 19"E
L82	59.40	S4° 41′ 53″E
L83	35.57	S4° 59′ 38″E
L84	44.41	S1° 26' 19"W
L85	43.82	S18° 09' 30"W
L86	12.54	S14° 27′ 00″W
L87	29.44	N84° 54′ 23″E
L88	11.56	N16° 51' 41"E
L89	48.26	N59° 11' 20"E
L90	68.67	N36° 00′ 45″W
L91	44.20	N9° 44′ 51″W
L92	59.13	NO° 38' 29"E
L93	7.14	N1° 43′ 29″E
L94	66.26	N1° 43′ 29″E
L95	86.64	N2° 16' 55"W
L96	46.70	N2° 06′ 01″W
L97	46.67	NO° 01' 13"W
L98	63.98	N10° 49' 53"W
L99	61.09	N10° 52' 46"E
L100	35.53	N38° 23′ 30″E



								PIPELINE, LLC TIGATION
					SITE	SC-65: BE	CKERS	S CORNERS ROAD
					W	ETLANDS ME	ETES ANI	D BOUNDS TABLES
- No.	- Revision	- Date	- Drawn	- Checked	Klein	schm	<u>idt</u>	141 Main Street P.O. Box 650 Pittsfield, Maine 04967 Telephone: (207) 487-3328 Fax: (207) 487-3124 www.KleinschmidtUSA.com
ELECTR PURPOS	COUMENT IS A DRAFT VERSION PROVIDED FOR THE CONVENIENCE OF THE USER AND IS NOT AN INSTRUMENT OF E OF KLEINSCHMIDT ASSOCIATES UNLESS IT BEARS THE PROFESSIONAL ENGINEER'S STAMP AND ORIGINAL URE. THIS DOCUMENT IS NOT A PRODUCT, AND TRANSFER OF A VERSION OF AN INSTRUMENT OF SERVICE BY ONIC MEDIA IS NOT DEEMED A SALE. THIS DOCUMENT MAY NOT BE ALTERED BY OTHERS OR USED FOR PROJECTS OR SES OTHER THAN THE PROJECT FOR WHICH IT WAS PREPARED, WITHOUT THE EXPRESS WRITTEN PERMISSION OF CHMIDT ASSOCIATES.	Designed DDW	Drawn DDW	Checked TAK	Project No. 3786-001	Date Revised 7-31-2014	Drawing No.	4





					CONSTITUTION PIPELINE, LLC WETLAND MITIGATION
					SITE SC-65: BECKERS CORNERS ROAD
					SECTIONS
- No.	- Revision	- Date	- Drawn	- Checked	Kleinschmidt 141 Main Street P.O. Box 650 Pittsfield, Maine 04967 Telephone: (207) 487-3328 Fax: (207) 487-3124 www.KleinschmidtUSA.com
SERVICE SIGNATU ELECTRO PURPOS	CUMENT IS A DRAFT VERSION PROVIDED FOR THE CONVENIENCE OF THE USER AND IS NOT AN INSTRUMENT OF E OF KLEINSCHMIDT ASSOCIATES UNLESS IT BEARS THE PROFESSIONAL ENGINEER'S STAMP AND ORIGINAL JURE. THIS DOCUMENT IS NOT A PRODUCT, AND TRANSFER OF A VERSION OF AN INSTRUMENT OF SERVICE BY ONIC MEDIA IS NOT DEEMED A SALE. THIS DOCUMENT MAY NOT BE ALTERED BY OTHERS OR USED FOR PROJECTS OR SES OTHER THAN THE PROJECT FOR WHICH IT WAS PREPARED, WITHOUT THE EXPRESS WRITTEN PERMISSION OF CHMIDT ASSOCIATES.	Designed DDW	Drawn DDW	Checked TAK	Project No. Date Revised Drawing No. Date Revised No.

PERMANEN	T EASEMENT	METES AND BOUNDS TABLE
Line #	Length	Direction
L1	260.35	N80° 55' 41"E
L2	245.04	N78° 53' 44"E
L3	60.82	N6° 02' 05"W
L4	39.28	N8° 03' 38"W
L5	155.79	N8° 03' 38"W
L6	66.67	N4° 53′ 04"W
L7	112.37	N4° 08' 01"W
L8	49.29	N9° 27' 47"W
L9	78.25	N6° 39′ 41″W
L10	72.49	N6° 39′ 41″W
L11	86.73	N5° 55' 40"W
L12	190.90	N5° 55' 40"W
L13	198.74	S85° 44′ 58"W
L14	109.68	S88° 41′ 19"W
L15	174.95	S87° 06' 49"W
L16	157.79	S80° 39' 21"W
L17	287.40	S82° 26' 18"W
L18	24.30	S66° 42′ 03″W
L19	275.93	S77° 02' 04"W
L20	145.92	S68° 50' 16"W
L21	149.94	S76° 48' 55"W
L22	130.45	S85° 14′ 48″W
L23	120.41	S74° 53' 19"W
L24	122.90	S71° 55′ 24″W
L25	10.41	S27° 38′ 43″E
L26	114.15	S18° 29' 57"E
L27	206.76	S22° 04' 42"E
L28	474.36	S19° 14' 05"E
L29	278.94	S19° 47' 07"E
L30	279.51	S20° 51' 53"E
L31	485.08	N83° 01' 29"E
L32	390.82	N35° 04' 12"W
L33	334.67	N11° 17' 24"E
L34	468.04	S86° 15′ 30″E
L35	183.18	S37° 34' 59"E
L36	418.21	S4° 41' 08"E
L37	17.71	N83° 01' 29"E
L38	82.31	N85° 18' 52"E
L39	492.29	N4° 41' 08"W

								PIPELINE, LLC TIGATION
					SITE	SC-65: BE	CKER	S CORNERS ROAD
					CONSERV	ATION EASE	MENT ME	ETES AND BOUNDS TABLES
- No.	- Revision	- Date	- Drawn	- Checked	Kleir	schm	nidt (141 Main Street P.O. Box 650 Pittsfield, Maine 04967 Telephone: (207) 487-3328 Fax: (207) 487-3124 www.KleinschmidtUSA.com
THIS DOC SERVICE SIGNATUI ELECTRO PURPOSE	CUMENT IS A DRAFT VERSION PROVIDED FOR THE CONVENIENCE OF THE USER AND IS NOT AN INSTRUMENT OF	Designed DDW	Drawn DDW	Checked	Project No. 3786-001	Date Revised 7-31-2014	Drawing No.	13

- END OF THE SPECIFIED ELEVATION RANGES. 2. THE PLANTING CONTRACTOR IS RESPONSIBLE FOR PLANTING AT APPROPRIATE ELEVATIONS AND WATER DEPTHS.
- 3. THE PLANTING CONTRACTOR SHALL PRESERVE AND MAINTAIN THE PLANTS IN A HEALTHY CONDITION DURING THE ESTABLISHMENT PERIOD. THE ESTABLISHMENT PERIOD WILL END AS SPECIFIED IN THE SPECIFICATIONS.
- 4. ALL PLANTING MATERIAL SHALL BE FREE OF UNWANTED SEED OR INVASIVE PLANT MATERIAL.
- 5. THE PLANTING CONTRACTOR SHALL NOTIFY THE ENGINEER IN WRITING PRIOR TO PLANT INSTALLATION IF CONFLICTS BETWEEN THE CONTRACT DOCUMENTS AND FIELD CONDITIONS ARE FOUND.
- 6. THE PLANTING CONTRACTOR IS RESPONSIBLE TO GROW OR ACQUIRE THE REQUIRED PLANT MATERIAL. THE PLANT MATERIAL SHALL BE OF THE SIZE SPECIFIED AT THE TIME OF PLANTING. KLEINSCHMIDT ASSOCIATES SHALL BE AFFORDED THE OPPORTUNITY TO INSPECT THE PLANT MATERIAL PERIODICALLY AND PRIOR TO INSTALLATION. ANY PLANT MATERIAL REJECTED SHALL BE REPLACED AT THE CONTRACTOR'S EXPENSE. THE CONTRACTOR IS RESPONSIBLE TO START THE PLANTS TO ENABLE PLANTING WITHIN THE TIMEFRAME ESTABLISHED BY THE CONTRACT FOR THIS WORK.
- 7. THE PLANTING CONTRACTOR WILL PLANT IN SPECIFIED AREAS PER PLANS, AFTER THE EXCAVATION CONTRACTOR HAS GRADED THE SITE, AND COMPLETED THEIR WORK ON THE SITE AREA TO BE PLANTED. AFTER KLEINSCHMIDT NOTIFIES THE CONTRACTOR THAT THE AS-BUILT SURVEY HAS BEEN APPROVED, THE PLANTING CONTRACTOR MAY BEGIN PLANTING THE SITE.

			Trees		Seed	Herbaceous
Zone	Туре	Acres	(200/acre)	Shrubs	(20 lbs/acre)	Plugs
Upland Buffer	Establishment	2.3		(50/acre)		
Tree	#3	90%	414			
Tree	#7	10%	46			
Shrub	#1	100%		115		
Seed	lbs	100%			46	
Forested Wetland	Establishment	1.0	(450/acre)	(50/acre)		
Tree	#3	90%	40.5			
Tree	#7	10%	4.5			
Shrub	#1	100%		5		
Seed	lbs	100%			2	
Forested Wetland	Enhancement	0.4		(50/acre)		
Tree	#3	90%	72			
Tree	#7	10%	8			
Shrub	#1	100%		20		
Seed	lbs	100%			8	
Scrub Shrub Wetland	Enhancement	1.3		(300/acre)		(1,000/acre)
Shrub	#1	50%		195		
Shrub	#3	50%		195		
Seed	lbs	100%			26	
Herbaceous	plugs	100%				1,300
Emergent Wetland	Establishment	0.3				(2,000/acre)
Seed	lbs	100%			6	
Herbaceous	plugs	100%				600
Emergent Wetland	Enhancement	0.9				(2,000/acre)
Seed	lbs	100%			18	
Herbaceous	plugs	100%				1,800
	•	TOTALS:	585	420	221	2,400

Scientific name	Common Name	NCNE	mix ratio
Acer saccharinum	Silv er maple	FACW	
Acer saccharum	Sugar maple	FACU	
Betula alleghaniensis	Yellow birch	FAC	
Betula papyrifera	Paper birch	FACU	
Betula populifolia	Gray birch	FAC	
Carpinus caroliniana	American hornbeam	FAC	/007
Nyssa sylvatica	Black gum	FAC	60%
Platanus occidentalis	American sycamore	FACW	
Populus deltoides	Cottonwood	FAC	
Prunus serotina	Black cherry	FACU	
Quercus bicolor	Swamp white oak	FACW	
Tsuga canadensis	Eastern hemlock	FACU	
Acer rubrum	Red maple	FAC	
Quercus montana	Chestnut oak	UPL	40%
Quercus rubra	Northern red oak	FACU	\exists

UPLAND BUFFER: SHRUBS

Scientific name	Common Name	NCNE	mix ratio
Amelanchier canadensis	Serv iceberry	FAC	
Aronia arbutifolia	Red Chokeberry	FACW	
Aronia meloncarpa	Black Chokeberry	FAC	
Prunus virginiana	Chokecherry	FACU	100%
Viburnum acerifolium	Maple Leaf Viburnum	UPL	
Viburnum lentago	Nannyberry	FAC	
Viburnum prunifolium	Blackhaw	FACU	

UPLAND BUFFER: SEED MIX

Scientific name	Common Name	NCNE	mix ratio
Andropogon virginicus	Broomsedge	FACU	17.50%
Asclepias syriaca	Common Milkweed		0.94%
Asclepias tuberosa	Butterfly Milkweed		1.25%
Aster lateriflorus	Calico Aster	FAC	0.63%
Bouteloua curtipendula	Sideoats Grama		5.00%
Senna marilandica	Maryland Senna	FACW	0.63%
Coreopsis lanceolata	Lanceleaf Coreopsis	FACU	0.63%
Coreopsis tinctoria	Plains Coreopsis	FACU	0.63%
Desmodium canadense	Showy Ticktrefoil	FAC	0.63%
Elymus hystrix	Bottlebrush Grass	FACU	5.00%
Elymus v irginicus	Virginia Wildrye	FACW	5.00%
Eragrostis hirsuta	Bigtop Lov egrass	FACU	5.00%
Gaillardia aristata	Perennial Gaillardia		0.31%
Helenium flexuosum	Purplehead Sneezeweed	FAC	1.25%
Heliopsis helianthoides	Oxeye Sunflower	FACU	0.93%
Lespedeza virginica	Slender Bushclov er		1.24%
Liatris spicata	Marsh Blazing Star	FAC	0.31%
Panicum v irgatum	Switchgrass	FAC	5.00%
Penstemon laevigatus	Appalachian Beardtongue	FACU	0.62%
Rudbeckia triloba	Browneyed Susan	FACU	1.87%
Schizachyrium scoparium	Little Bluestem	FACU	27.50%
Solidago juncea	Early Goldenrod		1.25%
Solidago rugosa	Wrinkleleaf Goldenrod	FAC	1.25%
Symphyotrichum nov ae-angliae	New England Aster	FACW	0.63%
Tridens flav us	Purpletop	UPL	15.00%

FORESTED WETLAND: TREES

Scientific name	Common Name	NCNE	mix ratio			
Acer rubrum	Red maple	FAC				
Acer saccharinum	Silv er maple	FACW				
Betula populifolia	Gray birch	FAC				
Nyssa sylvatica	Black gum	FAC	80%			
Platanus occidentalis	Sycamore	FACW	00%			
Populus deltoides	Cottonwood	FAC				
Quercus bicolor	Swamp white oak	FACW				
Quercus palustris	Pin oak	FACW				
Betula alleghaniensis	Yellow birch	FAC				
Betula nigra	Riv er birch	FACW				
Carpinus caroliniana	American hornbeam	FAC	20%			
Tsuga canadensis	Eastern Hemlock	FACU	1			
Salix nigra	Black willow	OBL	1			
FORESTED WETLAND: SHRUBS						
Scientific name	Common Name	NCNE	mix ratio			

Salix nigra	Black willow	OBL	1
FORESTED WETLAND: SHRU	JBS	•	•
Scientific name	Common Name	NCNE	mix ratio
Alnus serrulata	Smooth Alder	OBL	
Cornus amomum	Silky Dogwood	FACW	1
Cornus racemosa	Gray Dogwood	FAC	60%
Lindera benzoin	Spicebush	FACW	00%
Sambucus canadensis	Elderberry	FACW	1
Vaccinium corymbosum	Highbush Blueberry	FACW	1
Clethra alnifolia	Sweet Pepperbush	FAC	
llex verticillata	Winterberry	FACW	1
Viburnum cassinoides	Wild Raisin	FACW	40%
Viburnum dentatum	Arrowwood	FAC	1
Viburnum lentago	Nannyberry	FACW	

FORESTED WETLAND: SEED MIX

Scientific name	Common Name	NCNE	mix ratio
Asclepias incarnata	Swamp Milkweed	OBL	3%
Carex folliculata	Northern Long Sedge	OBL	1%
Carex intumescens	Bladder Sedge	FACW	1%
Carex lupulina	Hop Sedge	OBL	5%
Carex Iurida	Lurid Sedge	OBL	10%
Carex squarrosa	Squarrose Sedge	OBL	3%
Carex vulpinoidea	Fox Sedge	OBL	25%
Cinna arundinacea	Wood Reedgrass	FACW	1%
Doellingeria umbellata	Flat Topped White Aste	FACW	1%
Elymus v irginicus	Virginia Wildrye	FACW	20%
Eupatorium fistulosum	Joe Pye Weed	FACW	1%
Eupatorium perfoliatum	Boneset	FACW	2%
Glyceria canadensis	Rattlesnake Grass	OBL	2%
Helopsis helianthoides	Oxeye Sunflower	FACU	2%
Juncus effusus	Soft Rush	OBL	3%
Lilium superbum	Turk's Cap Lily	FACW	1%
Lobelia siphilitica	Great Blue Lobelia	FACW	1%
Mimulus ringens	Square Stemmed Monk	OBL	1%
Onoclea sensibilis	Sensitiv e Fern	FACW	2%
Panicum rigidulum	Redtop Panicgrass	FACW	4%
Polygonum pensylv anicum	Pennsylvania Smartwe	FACW	1%
Pycnanthemum tenuifolium	Slender Mountainmint	FAC	1%
Scirpus polyphyllus	Many Leaved Bulrush	OBL	1%
Sisyrinchium angustifolium	Narrowleaf Blue Eyed G	FAC	1%
Symphyotrichum nov ae-ar	New England Aster	FACW	1%
Symphyotrichum prenanth	Zigzag Aster, PA Ecotyp	FAC	1%
Symphyotrichum puniceun	Purplestem Aster	OBL	1%
Verbena hastata	Blue Verv ain	FACW	3%
Vernonia noveboracensis	New York Ironweed	FACW	1%

SCRUB-SHRUB WETLAND: SHRUBS

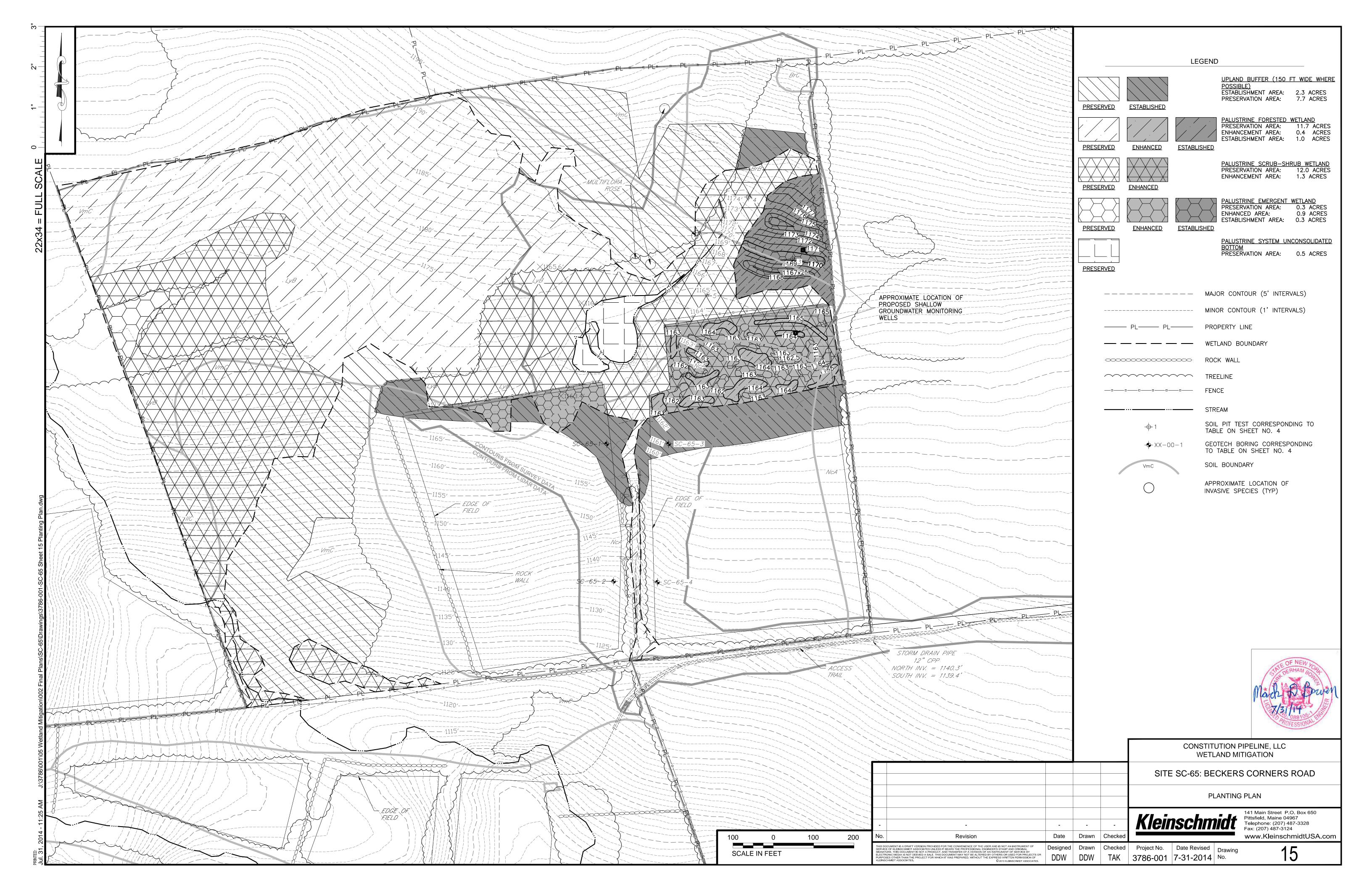
SCROB-STIROD WEILAND.	STIKODS		
Scientific name	Common Name	NCNE	mix ratio
Alnus incana rugosa	Speckled alder	FACW	
Cephalanthus occident	d Buttonbush	OBL	7
Cornus amomum	Silky Dogwood	FACW	7
Cornus sericea	Red osier dogwood	FACW	7
llex verticillata	Winterberry	FACW	60%
Physocarpus opulifolius	Ninebark	FACW	7 00%
Sambucus canadensis	Elderberry	FACW	7
Spiraea latifolia	Meadowsweet	FACW	7
Rosa palustris	Swamp Rose	OBL	7
Viburnum nudum	Possumhaw	FACW	7
Alnus serrulata	Smooth Alder	OBL	
Salix discolor	Pussy Willow	FACW	40%
Salix exugia	Sandbar Willow	FACW	40%
Viburnum dentatum	Arrowwood	FAC	7

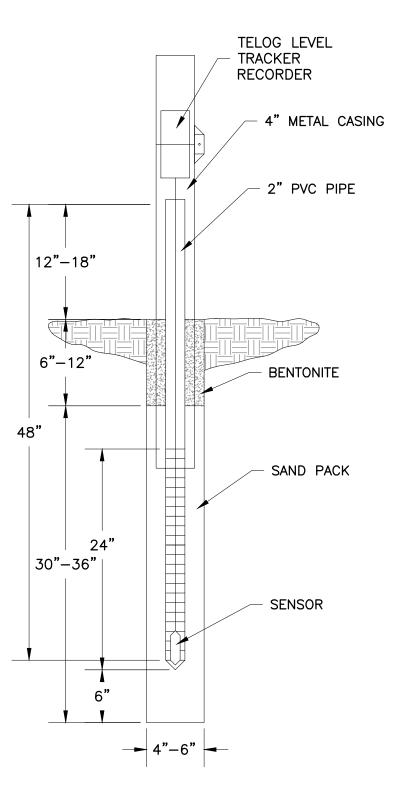
SCRUB-SHRUB WETLAND: HERBACEOUS PLUGS

Scientific name	Common Name	NCNE	mix ratio
Asclepias incarnata	Swamp Milkweed	OBL	
Carex comosa	Bristly Sedge	OBL	
Carex lacustris	Lake Sedge	OBL	
Carex vulpinoidea	Fox Sedge	OBL	
Eutrochium maculatum	Spotted Joe-pye weed	OBL	
Eupatorium perfoliatum	Boneset	FACW	
Lobelia siphilitica	Great Blue Lobelia	FACW	60%
Osmunda regalis	Royal Fern	OBL	0076
Peltandra virginica	Arrow Arum	OBL	
Schoenoplectus fluviatilis	Riv er Bulrush	OBL	
Sparganium americanun	Eastern Burreed	OBL	
Sparganium eurycarpum	Giant Burreed	OBL	
Symphyotrichum puniced	Puplestem Aster	OBL	
Calamogrostis canadens	Blue joint grass	OBL	
Carex stricta	Tussock sedge	OBL	40%
Spartina pectinata	Praire Cordgrass	FACW	40/0
Symphyotrichum novae-	New England aster	FACW	

Scientific name	Common Name	NCNE	mix ratio	
Asclepias incarnata	Swamp Milkweed	OBL	3%	
Carex folliculata	Northern Long Sedge	OBL	1%	
Carex intumescens	Bladder Sedge	FACW	1%	
Carex lupulina	Hop Sedge	OBL	5%	
Carex Iurida	Lurid Sedge	OBL	10%	
Carex squarrosa	Squarrose Sedge	OBL	3%	
Carex vulpinoidea	Fox Sedge	OBL	25%	
Cinna arundinacea	Wood Reedgrass	FACW	1%	
Doellingeria umbellata	Flat Topped White Aster	FACW	1%	
Elymus v irginicus	Virginia Wildrye	FACW	20%	
Eutrochium fistulosum	um fistulosum Joe Pye Weed			
Eupatorium perfoliatum	Boneset	FACW	2%	
Glyceria canadensis	Rattlesnake Grass	OBL	2%	
Heliopsis helianthoides	Oxeye Sunflower	FACU	2%	
Juncus effusus	Soft Rush	OBL	3%	
Lilium superbum	Turk's Cap Lily	FACW	1%	
Lobelia siphilitica	Great Blue Lobelia	FACW	1%	
Mimulus ringens	Square Stemmed Monke	OBL	1%	
Onoclea sensibilis	Sensitiv e Fern	FACW	2%	
Panicum rigidulum	Redtop Panicgrass	FACW	4%	
Polygonum pensylv anicu	Pennsylvania Smartweed	FACW	1%	
Pycnanthemum tenuifoliu	Slender Mountainmint	FAC	1%	
Scirpus polyphyllus	Many Leaved Bulrush	OBL	1%	
Sisyrinchium angustifolium	Narrowleaf Blue Eyed Gro	FAC	1%	
Symphyotrichum nov ae-c	New England Aster	FACW	1%	
Symphyotrichum prenant	Zigzag Aster, PA Ecotype	FAC	1%	
Symphyotrichum puniceu	Purplestem Aster	OBL	1%	
Verbena hastata	Blue Vervain	FACW	3%	
Vernonia noveboracensis	New York Ironweed	FACW	1%	

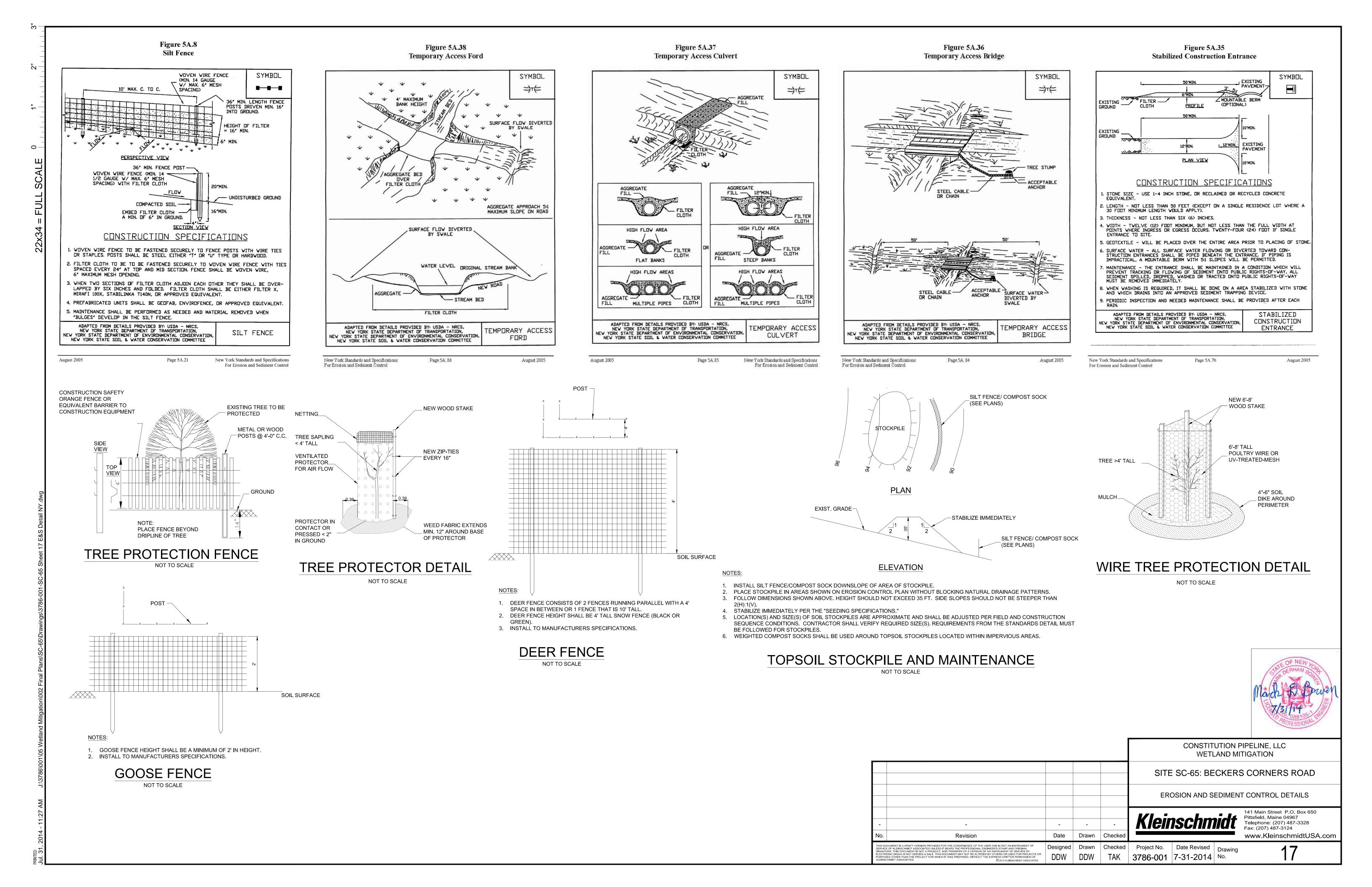
EMERGENT WETLAND: HERBACEOUS PLUGS


Scientific name	Common Name	NCNE	mix ratio
Acorus americanus	Sweetflag	OBL	
Calamogrostis canadensis	Blue joint grass	OBL	
Carex crinita	Fringed sedge	OBL	
Carex intumenscens	Bladder sedge	FACW	
Carex stricta	Tussock sedge	OBL	
Eleocharis palustris	Spike rush	OBL	
Eupatorium perfoliatum	Common Boneset	FACW	
Eutrochium maculatum	Spotted Joe-pye weed	OBL	
Glyceria canadensis	Manna grass	OBL	
Helenium autumnale	Fall Sneezeweed	FACW	
Helianthus angustifolius	Swamp Sunflower	FACW	60%
Juncus effusus	Soft rush	OBL	
Liatris spicata	Dense Gayfeather	FAC	
Lobelia siphilitica	Great Blue Lobelia	FACW	
Mimulus ringens	Monkey flower	OBL	
Onoclea sensibilis	Sensitiv e fern	FACW	
Scirpus atrovirens	Dark green bulrush	OBL	
Scirpus cyperinus	Woolgrass	OBL	
Symphyotrichum novae-anglia	New England aster	FACW	
Symphyotrichum novi-belgii	New York Aster	FACW	
Verbena hastata	Blue vervain	FACW	
Asclepias incarnata	Swamp Milkweed	OBL	
Carex comosa	Bristly Sedge	OBL	
Carex lacustris	Lake Sedge	OBL	
Carex lupulina	Hop Sedge	OBL	
Carex Iurida	Lurid Sedge	OBL	
Carex vulpinoidea	Fox Sedge	OBL	
Iris versicolor	Blueflag Iris	OBL	
Liatris pycnostachya	Cat-Tail Gayfeather	FAC	40%
Sagittaria latifolia	Arrowhead	OBL	
Schoenoplectus fluviatilis	Riv er Bulrush	OBL	
Schoenoplectus tabernaemon:	Softstem Bulrush	OBL	
Sparganium americanum	Eastern Burreed	OBL	
Sparganium eurycarpum	Giant Burreed	OBL	
Spartina pectinata	Praire Cordgrass	FACW	


EMERGENT WETLAND: SEED MIX

LMERGENT WEILAND. SEED MI			
Scientific name	Common Name	NCNE	mix ratio
Alisma subcordatum	Water Plantain	OBL	1%
Asclepia incarnata	Swamp Milkweed	OBL	3%
Bidens cernua	Nodding Bur Marigold	OBL	1%
Carex crinita	Fringed Sedge	OBL	2%
Carex folliculata	Northern Long Sedge	OBL	1%
Carex gynandra	Nodding Sedge	OBL	9%
Carex lupulina	Hop Sedge	OBL	5%
Carex Iurida	Lurid Sedge	OBL	10%
Carex stricta	Tussock Sedge	OBL	1%
Carex vulpinoidea	Fox Sedge	OBL	29%
Chelone glabra	Turtlehead	OBL	1%
Eutrochium fistulosum	Joe Pye Weed	FACW	1%
Eupatorium perfoliatum	Boneset	FACW	2%
Glyceria canadensis	Rattlesnake Grass	OBL	3%
Juncus effusus	Soft Rush	OBL	3%
Mimulus ringens	Monkeyflower	OBL	2%
Panicum rigidulum	Redtop Panicgrass	FACW	5%
Penthorum sedoides	Ditch Stonecrop	OBL	1%
Scirpus cyperinus	Woolgrass	OBL	2%
Scirpus polyphyllus	Many Leaved Bulrush	OBL	2%
Sparganium americanum	Eastern Bur Reed	OBL	10%
Symphyotrichum puniceum	Purplestem Aster	OBL	2%
Verbena hastata	Blue Vervain	FACW	3%
Vernonia noveboracensis	New York Ironweed	FACW	1%

					CONSTITUTION PIPELINE, LLC WETLAND MITIGATION			
					SITE SC-65: BECKERS CORNERS ROAD			
					PLANTING NOTES AND TABLES			S AND TABLES
-	<u>-</u>	-	-	-	Kleir	schn	nidt (141 Main Street P.O. Box 650 Pittsfield, Maine 04967 Telephone: (207) 487-3328
No.	Revision	Date	Drawn	Checked				Fax: (207) 487-3124 www.KleinschmidtUSA.com
SERVICE SIGNATU ELECTRO PURPOSI	CUMENT IS A DRAFT VERSION PROVIDED FOR THE CONVENIENCE OF THE USER AND IS NOT AN INSTRUMENT OF OF IKLEINSCHMIDT ASSOCIATES UNLESS IT BEARS THE PROFESSIONAL ENGINEER'S STAMP AND ORIGINAL IRE: THIS DOCUMENT IS NOT A PRODUCT, AND TRANSPER OF A VERSION OF AN INSTRUMENT OF SERVICE BY ONIC MEDIA IS NOT DEEMED A SALE. THIS DOCUMENT MAY NOT BE ALTERED BY OTHERS OR USED FOR PROJECTS OR ES OTHER THAN THE PROJECT FOR WHICH IT WAS PREPARED, WITHOUT THE EXPRESS WRITTEN PERMISSION OF HMIDT ASSOCIATES.	Designed DDW	Drawn DDW	Checked TAK	Project No. 3786-001	Date Revised 7-31-2014	Drawing No.	14



SHALLOW GROUNDWATER MONITORING WELL

(N.T.S)

								PIPELINE, LLC TIGATION
					SITE SC-65: BECKERS CORNERS ROAD			
					DETAILS			LS
- No.	- Revision	- Date	- Drawn	- Checked	Klein	schm	<u>iidt</u>	141 Main Street P.O. Box 650 Pittsfield, Maine 04967 Telephone: (207) 487-3328 Fax: (207) 487-3124 www.KleinschmidtUSA.com
SERVICE SIGNATU ELECTRO PURPOS	CUMENT IS A DRAFT VERSION PROVIDED FOR THE CONVENIENCE OF THE USER AND IS NOT AN INSTRUMENT OF E OF KLEINSCHMIDT ASSOCIATES UNLESS IT BEARS THE PROFESSIONAL ENGINEER'S STAMP AND ORIGINAL IRE. THIS DOCUMENT IS NOT A PRODUCT, AND TRANSFER OF A VERSION OF AN INSTRUMENT OF SERVICE BY ONIC MEDIA IS NOT DEEMED A SALE. THIS DOCUMENT MAY NOT BE ALTERED BY OTHERS OR USED FOR PROJECTS OR ESS OTHER THAN THE PROJECT FOR WHICH IT WAS PREPARED, WITHOUT THE EXPRESS WRITTEN PERMISSION OF THIM OTHER PROJECTS OR USED FOR PROJECTS OR PROJECTS OR USED FOR PROJECTS OR U	Designed DDW	Drawn DDW	Checked TAK	Project No. 3786-001	Date Revised 7-31-2014	Drawing No.	16

MITIGATION SITE PLAN

SC-66: TOWER ROAD

MITIGATION SITE PLAN SC-66: TOWER ROAD

SITE ID: SC-66

SITE NAME: Tower Road Property

LOCATION: Warnerville, Schoharie County, New York

WATERSHED: Schoharie – 02020005

PROJECT TYPE: Wetland Mitigation

LANDOWNER: Kenneth A. Gori

SITE DESCRIPTION

The proposed mitigation site is located on Tower Road south of Cobleskill, New York. The property is surrounded on three sides by the Petersburg Pass State Forest. The primary existing cover types are forested woodlands and wetlands. Multiple beaver dams create a series of ponds on the property. The ponds are surrounded by a large wetland complex, which is made up of areas of emergent, scrub-shrub, and forested wetlands. Groundwater within the wetlands is perched above a dense basal till layer and flows horizontally over the site and eventually into the beaver ponds. The only development present is a house near Tower Road, which is surrounded by open space that is partially maintained with sparse trees. There is evidence of past logging activity on the property. Multiple logging trails cut through the wetlands and upland forest area and lead to a large cleared area at the northern end of the wetland complex.

PROJECT DESCRIPTION

The proposed mitigation will establish 1.5 acres of forested wetland. Establishing forested wetland will require excavating soil to a depth of less than 1 foot. In addition, the areas disturbed by historical logging will be enhanced to become functioning wetlands, resulting in 0.5 acres of enhanced forested wetland, 0.9 acres of enhanced scrub-shrub wetland, and 0.1 acres of enhanced emergent wetland. In addition, approximately 18.6 acres of PFO wetland, 4.2 acres of PSS wetland, and 2.6 acres of PEM wetlands will be preserved. To protect the enhanced and established wetlands on the property, 19.9 acres of upland buffer will be preserved, and 1.9 acres of additional buffer will be established.

BENEFITS

Wildlife Habitat: The areas to be established and enhanced are maintained as a residential yard or are unused landing areas and skid roads associated with historical forestry operations. The historical wetland to be enhanced lacks seasonal ponding, topographic diversity, and botanical diversity. The area affords the opportunity to enhance habitat to include seasonal ponds and a diverse community of native plants, including berry-producing shrubs such as viburnums (*Viburnum spp.*) and dogwoods (*Cornus spp.*). The resulting complex, vertical structure of

vegetation (trees, shrubs and herbaceous layers) and diverse microtopography (low, ponded areas interspersed with higher mounds dominated by woody vegetation) will provide microhabitats for herptiles (e.g., basking features and low, seasonal ponds), plants, and other species. The additional wetland to be established immediately adjacent to existing wetlands within a residential yard will expand the size and complexity of the wetland system, thereby enhancing wildlife habitat.

Flood Flow Alteration: The shallow excavation adjacent to existing riparian wetlands will expand floodplain storage and accommodate and retain both stormwater runoff and overbank flows. Typical overbank flows will reach the established area, and ponded areas will retain flood waters, allowing them to infiltrate slowly and, later, to recharge base flow in the stream.

Water Quality (Sediment/Toxicant Retention, Nutrient Retention): The depression in the floodplain will trap sediment and associated nutrients and pollutants during floods. The design will diversify the topography and increase the time that floodwaters and stormwater runoff (e.g., from the residence just up-gradient from the mitigation wetland) remain in contact with soil and vegetation.

Figure 1 summarizes functions and services provided by the proposed mitigation.

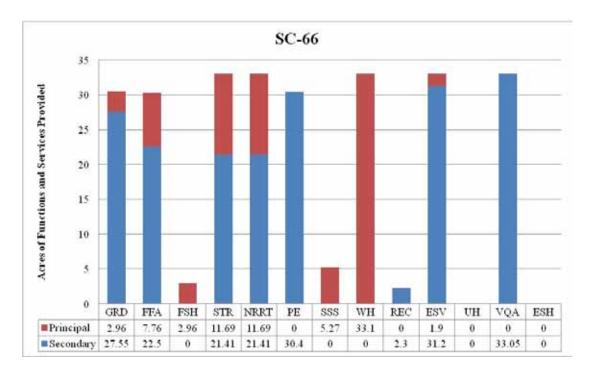
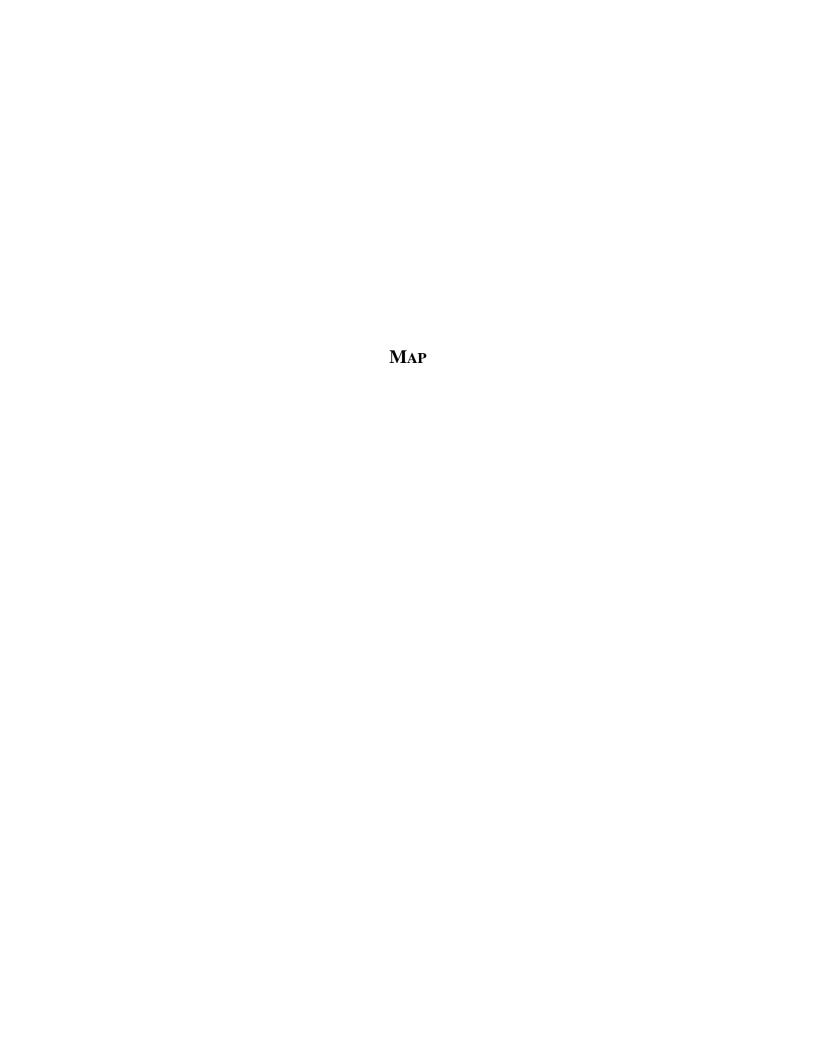
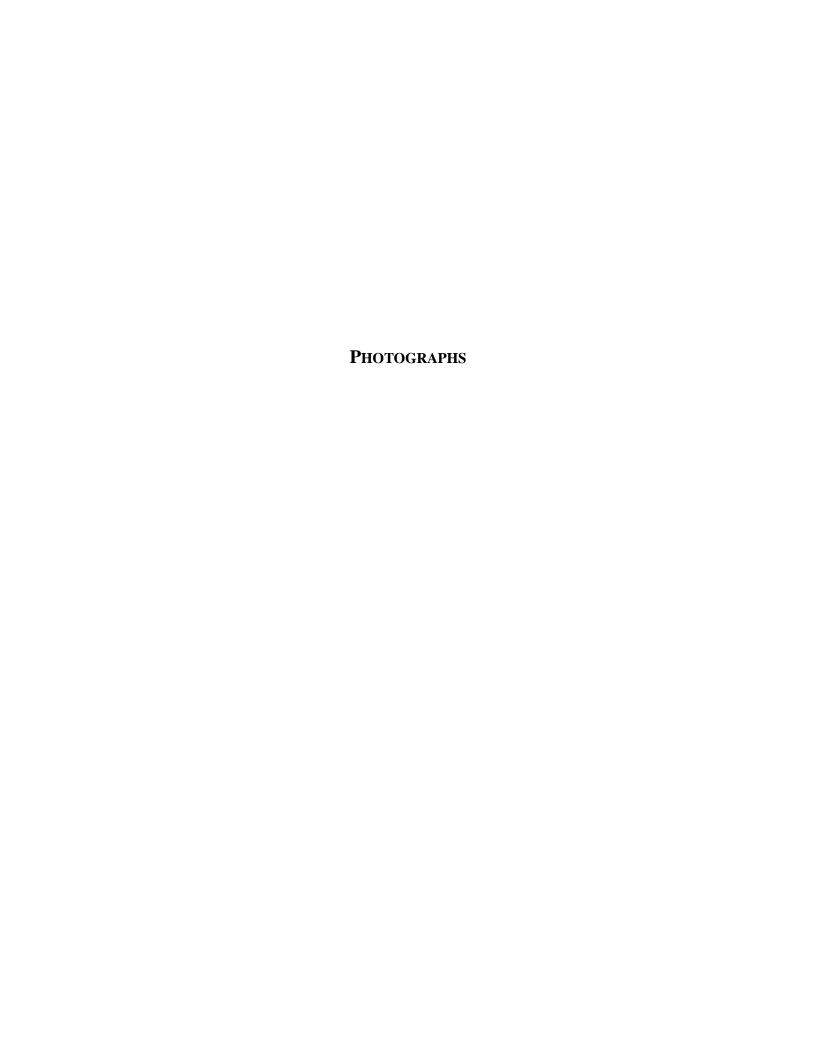


FIGURE 1. FUNCTIONS AND SERVICES PROVIDED BY THE PROPOSED MITIGATION.

Groundwater Recharge/Discharge (GRD), Floodflow Alteration (FFA), Fish and Shellfish Habitat (FSH), Sediment/Toxicant Retention (STR), Nutrient Removal and Retention (NRRT), Production Export (PE), Sediment/Shoreline Stabilization (SSS), Wildlife Habitat (WH), Recreation (REC), Educational/Scientific Value (ESV), Uniqueness/Heritage (UH), Visual Quality and Aesthetics (VQA), Endangered Species Habitat (ESH)




FEASIBILITY

The wetlands on this site are stable and have connectivity to State Forest land on three sides. A large area of existing wetland with diverse habitats and functions make it an ideal candidate for preservation. The opportunity to create wetland on the eastern hillside is also ideal because the area is borderline wetland in its existing condition. The beaver dams on the property help to maintain the current groundwater levels in the surrounding wetlands; however, the dams could breach, possibly resulting in a loss of hydrology in the preserved and created wetlands. The presence of invasive species is limited. Invasive species will be treated if found but are not expected to will be a significant issue.

A Phase I Environmental Site Assessment (ESA) was conducted to identify recognized environmental conditions (RECs), historical RECs, or de minimis conditions associated with the property. No RECs, historical RECs, or de minimis conditions were identified. A Phase 1b archaeological assessment revealed no archaeological artifacts on the property. A geotechnical study included drilling three soil boring pits around the wetland mitigation area. The study revealed soil types and depths to groundwater consistent with the soil survey results. The surficial soil was identified as silty sand with gravel and clayey sand with gravel, which is compatible with the proposed wetland plantings.

PHOTOGRAPH 1. SOUTHERNMOST BEAVER DAM ON PROPERTY.

PHOTOGRAPH 2. CLEARED TIMBER AREA NORTH OF BEAVER DAMS.

PHOTOGRAPH 3. PROPOSED WETLAND CREATION AREA.

PHOTOGRAPH 4. DISTURBED TIMBER AREA.

WETLAND DELINEATION REPORT

SITE ID: SC-66

SITE NAME: Tower Road

LOCATION: Warnerville, Schoharie County, New York

WATERSHED: Schoharie – 02020005

SITE TYPE: Wetland Mitigation

LANDOWNER: Kenneth A. Gori, Owner

SITE DESCRIPTION

The SC-66 site is located on Tower Road south of Cobleskill. The property is surrounded on three sides by the Petersburg Pass State Forest. The primary existing cover type is hemlock forested woodlands as well as emergent wetlands. A small perennial stream with a series of beaver ponds flows south through the property; this beaver flowage is associated with riparian wetlands that are sustained by a combination of shallow groundwater, runoff and stream flooding. The only development present is a residential home near Tower Road. Surrounding the house is open space that is partially maintained with sparse trees. The property owners had begun to cut down timber at the time of the field visit to the site. There was a 15' wide logging trail leading to a cleared area at the northern end of the existing emergent wetlands on the property. The entire property was staked so it appeared that the majority of the timber on the property would be cut.

METHODS

Field surveys were completed on May 13, 2014. Wetlands were field delineated by using the methodology and standard practices outlined in the United States Army Corps of Engineers (USACE) Wetland Delineation Manual (USACE, 1987) and the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region, Version 2.0 (USACE, 2012). The Corps Manual provides technical guidance and procedures for identifying and delineating wetlands that may be subject to jurisdiction under Section 404 of the Clean Water Act (33 U.S.C. 1344) or Section 10 of the Rivers and Harbors Act (33 U.S.C. 403). According to the Corps Manual, identification of wetlands is based on a three factor approach involving indicators of hydrophytic vegetation, wetland hydrology, and hydric soils. USACE data forms are attached.

RESULTS

SAMPLE PLOT LOCATION

The primary wetland types identified within the property was forested and emergent associated with a beaver dam. A paired plot was completed for the forested and for the emergent wetlands and is shown in Table 1 along with the longitude and latitude.

TABLE 1. USACE SAMPLE PLOT LOCATIONS.

WETLAND ID	USACE PLOT	LONGITUDE	LATITUDE
SU-66	Upland 1	42° 37' 31.52" N	74° 27' 2.68" W
SU-66	Wetland 1	42° 37' 31.60" N	74° 27' 1.76" W
SU-66	Upland 2	42° 37' 39.61" N	74° 26′ 36.81″ W
SU-66	Wetland 2	42° 37' 39.16" N	74° 26′ 38.62″ W

HYDROLOGY

The site has a series of large beaver impoundments and is dominated by open water habitat and emergent and forested wetlands along the shoreline. Hydrology indicators include areas of extensive open water within the emergent wetland as well as areas of surface water within the hemlock forested wetland, and saturation to near the surface throughout.

VEGETATION

Forested wetland areas are dominated by eastern hemlock with some yellow birch in the tree stratum, eastern hemlock in the shrub stratum and sallow sedge in the herb layer. The emergent wetland was dominated by cattail as well as fringed sedge, tussock sedge, and wool grass.

TABLE 2. DOMINANT VEGETATION.

			INDICATOR	
SCIENTIFIC NAME	COMMON NAME	STRATUM	STATUS	UPLAND/WETLAND
Acer rubrum	Red maple	Tree	FAC	up
Betula populifolia	Gray birch	Tree	FAC	up
Carex crinita	Fringed sedge	Herb	OBL	wet
Carex lurida	Sallow sedge	Herb	OBL	wet
Carex stricta	Tussock sedge	Herb	OBL	wet
Pinus strobus	Eastern white pine	Tree	FACU	up
Scirpus cyperinus	Wool grass	Herb	OBL	wet
Tsuga canadensis	Eastern hemlock	Tree/shrub	FACU	wet
Typha latifolia	Cattail	Herb	OBL	wet

SOILS

Soils in the emergent wetland USACE plot consisted of 10 inches of 10 YR 2/1 peat. Peat makes up much of the wetland soils in the emergent wetlands. The soils in the forested wetlands are poorly drained and consist of Norwich and Chippewa very stony silt loam. Soils within the upland showed generally consisted of 6" of 10 YR 3/3 loam over 6" of 10 YR 4/4 fine silt loam that was uniform in color. From 12 to 18" below the surface, soils were 10 YR 5/3 fine silt loam with 15% 10 YR 5/8 concentrations.

FUNCTIONS AND SERVICES

The large, connected system of wetlands and presence of undisturbed uplands make the area ideal wildlife habitat. Species which require wetland and upland habitats (e.g., mole salamanders and wood frogs) will have access to both foraging and overwintering habitat.

The paired upland and wetland habitat on the site provides excellent habitat for a wide variety of species, forest interior songbirds and herptiles that breed in vernal pools but require adjacent, unfragmented forest outside of breeding periods.

Additionally, this wetland system occurs within the upper portion of the watershed and historical aerial photography indicates that the wetland system provides flood storage and flow attenuation by storing and slowing higher flows. The occurrence of longer retention times of flows, which results from the presence wetland vegetation and fine soils (*i.e.*, silt and clay), provides excellent water quality improvement functions by removing nutrients and retaining sediments.

PHOTOGRAPH 1. VIEW OF EMERGENT WETLAND.

PHOTOGRAPH 2. VIEW OF FORESTED WETLAND.

DISCUSSION

This parcel provides an opportunity for preservation of forested, emergent, and some scrub-shrub wetlands as well as substantial upland buffer. Mitigation opportunities also include the potential to enhance or restore portions of the existing wetlands where logging trails and recently cleared logging areas have open canopies and might benefit from establishment of native vegetation plantings. There is also the possibility that shallow scrapes (excavation) of upland fields immediately adjacent to the wetland boundary could establish additional wetlands, expanding the existing wetland and its functions.

Although this property is largely undeveloped, it cannot be guaranteed that it will remain so in the future. Logging is currently taking place on the property and stakes on the property indicate that the site is slated for future timber harvest. The preservation of this large, functionally diverse wetland along with upland buffers will protect that the ecological integrity and function associated with the larger wetland/buffer system and ensure that these functions remain intact in the future.

REFERENCES

- U.S. Army Corps of Engineers (USACE). January 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region (Ver. 2.0).
 U.S. Army Corps of Engineers. Vicksburg, MS. No. ERDC/EL TR-12-1. 176 Pp.
- U.S. Army Corps of Engineers (USACE). 1987. Corps of Engineers Wetland Delineation Manual. U.S. Army Corps of Engineers 143 pp.
- USACE. 2001. The Highway Methodology Workbook. U.S. Army Corps of Engineers New England District. 29 pp. NAEEP-360-1-30a.

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region Project/Site: Schoharic Sampling Date: 5.13.14 Applicant/Owner: State: Sampling Point: WST Investigator(s): KA - ITC Section, Township, Range: Warner. Ik Tower HILL 20 Landform (hillslope, terrace, etc.): Depressions Local relief (concave, convex, none): Concave Slope (%): 3 Subregion (LRR or MLRA): MID Atlantic Lat: 42°37'31.60'N Long: 74°27'1.76'W Datum: NAD 1983 Soil Map Unit Name: NWI classification: PEM Are climatic / hydrologic conditions on the site typical for this time of year? Yes No _____ (If no, explain in Remarks.) Are Vegetation _____, Soil _____, or Hydrology _____ significantly disturbed? Are "Normal Circumstances" present? Yes No Are Vegetation _____, Soil _____, or Hydrology _____ naturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc. Yes _____ No __ Is the Sampled Area Hydrophytic Vegetation Present? within a Wetland? Hydric Soil Present? Yes _____ No _____ Wetland Hydrology Present? Yes _____ No___ If yes, optional Wetland Site ID: Remarks: (Explain alternative procedures here or in a separate report.) **HYDROLOGY** Wetland Hydrology Indicators: Secondary Indicators (minimum of two required) Primary Indicators (minimum of one is required; check all that apply) Surface Soil Cracks (B6) Surface Water (A1) ___ Water-Stained Leaves (B9) __ Drainage Patterns (B10) __ High Water Table (A2) _ Aquatic Fauna (B13) ___ Moss Trim Lines (B16) Saturation (A3) ___ Marl Deposits (B15) ___ Dry-Season Water Table (C2) ___ Hydrogen Sulfide Odor (C1) Water Marks (B1) ___ Crayfish Burrows (C8) ___ Sediment Deposits (B2) __ Oxidized Rhizospheres on Living Roots (C3) __ Saturation Visible on Aerial Imagery (C9) ___ Drift Deposits (B3) ___ Presence of Reduced Iron (C4) ___ Stunted or Stressed Plants (D1) ___ Algal Mat or Crust (B4) __ Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) __ Iron Deposits (B5) __ Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) __ Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8) __ FAC-Neutral Test (D5) Field Observations: Yes No Depth (inches): 6" Surface Water Present? Yes ____ No ____ Depth (inches): Surface Water Table Present? Saturation Present? Yes ____ No ___ Depth (inches): Surface_ Wetland Hydrology Present? Yes No

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

BEAVER POND

(includes capillary fringe)

VEGETATION – Use scientific names o
--

Sampling Point: WET 1

Tree Stratum (Plot size:)		Dominant Indicator Species? Status	Dominance Test worksheet: Number of Dominant Species
2,			That Are OBL, FACW, or FAC:(A)
3			Total Number of Dominant Species Across All Strata: (B)
4			Percent of Dominant Species
5			That Are OBL, FACW, or FAC: (A/B)
7			Prevalence Index worksheet: Total % Cover of: Multiply by:
; 		= Total Cover	
Sapling/Shrub Stratum (Plot size:)	-		FACW species x 2 =
1			FAC species x 3 =
2			FACU species x 4 =
3.			UPL species x 5 =
			Column Totals: (A) (B)
5			Prevalence Index = B/A =
6.			Hydrophytic Vegetation Indicators:
7.			1 - Rapid Test for Hydrophytic Vegetation
		= Total Cover	2 - Dominance Test is >50%
Herb Stratum (Plot size:)		10101 00101	3 - Prevalence Index is ≤3.0¹
1. Carcy crinita	15.0	yes	4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
2. Carex stricta	15.0	705	Problematic Hydrophytic Vegetation ¹ (Explain)
3. Scirpus cyperinus	15.0	405	10.00
4 typha latitolia	37.5	yes	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
5			Definitions of Vegetation Strata:
6			Tree – Woody plants 3 in. (7.6 cm) or more in diameter
7			at breast height (DBH), regardless of height.
9			Sapling/shrub – Woody plants less than 3 in, DBH and greater than or equal to 3.28 ft (1 m) tall.
10			Herb – All herbaceous (non-woody) plants, regardless
11			of size, and woody plants less than 3.28 ft tall.
12		·	Woody vines – All woody vines greater than 3.28 ft in
		= Total Cover	height.
Woody Vine Stratum (Plot size:)			
1			
2			
3.			Hydrophytic Vegetation
4			Present? Yes No
Remarks: (include photo numbers here or on a separate		= Total Cover	
	sneet.)		
Beaver Ponp			
•			

Profile Description: (Describe to the de	epth needed to document the indicator or confirm	the absence of indicators.)
Depth Matrix	Redox Features	
(inches) Color (moist) %	Color (moist) % Type ¹ Loc ²	Texture Remarks
10" 104R2 1		<u>om</u>
10"-20" 1041 7/1		30
1 1	·———·——·	
-		
	·	
		
	*? ***********************************	· · · · · · · · · · · · · · · · · · ·
	·——————	
Tr		2
Hydric Soil Indicators:	M=Reduced Matrix, MS=Masked Sand Grains.	² Location: PL=Pore Lining, M=Matrix.
5,00		Indicators for Problematic Hydric Soils ³ :
Histosol (A1) Histic Epipedon (A2)	Polyvalue Below Surface (S8) (LRR R,	2 cm Muck (A10) (LRR K, L, MLRA 149B)
Black Histic (A3)	MLRA 149B)	Coast Prairie Redox (A16) (LRR K, L, R)
Hydrogen Sulfide (A4)	Thin Dark Surface (S9) (LRR R, MLRA 149B)	
Stratified Layers (A5)	Loamy Mucky Mineral (F1) (LRR K, L)Loamy Gleyed Matrix (F2)	Dark Surface (S7) (LRR K, L)
Depleted Below Dark Surface (A11)	Depleted Matrix (F3)	Polyvalue Below Surface (S8) (LRR K, L)
Thick Dark Surface (A12)	Redox Dark Surface (F6)	Thin Dark Surface (S9) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R)
Sandy Mucky Mineral (S1)	Depleted Dark Surface (F7)	Piedmont Floodplain Soils (F19) (MLRA 149B)
Sandy Gleyed Matrix (S4)	Redox Depressions (F8)	Mesic Spodic (TA6) (MLRA 144A, 145, 149B)
Sandy Redox (S5)		Red Parent Material (F21)
Stripped Matrix (S6)		Very Shallow Dark Surface (TF12)
Dark Surface (S7) (LRR R, MLRA 149	9B)	Other (Explain in Remarks)
		_ ` ` ' '
³ Indicators of hydrophytic vegetation and v	vetland hydrology must be present, unless disturbed	or problematic.
Restrictive Layer (if observed):		
Type:		
Depth (inches):		Hydric Soil Present? Yes NoNo
		133 135
Remarks:		

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region Project/Site: 5C-66 City/County: Schoharie Sampling Date: 5-13-15 Applicant/Owner: Sampling Point: W Investigator(s): KA - ITC Section, Township, Range: Tower RD Landform (hillslope, terrace, etc.): HILLSIDE Local relief (concave, convex, none): Concave Slope (%): Subregion (LRR or MLRA): _____ Lat: 42°37′31,52″N Long: 74°27′2.68″W Datum 1983 Soil Map Unit Name: NWI classification: Are climatic / hydrologic conditions on the site typical for this time of year? Yes _______ No _____ (If no, explain in Remarks.) Are Vegetation _____, Soil _____, or Hydrology _____ significantly disturbed? Are "Normal Circumstances" present? Yes _____ No ___ Are Vegetation _____, Soil _____, or Hydrology _____ naturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Is the Sampled Area Hydrophytic Vegetation Present? Yes_____ No ____ within a Wetland? Yes _____ No ____ Hydric Soil Present? Yes _____ No ____ Wetland Hydrology Present? Yes _____ No ____ If yes, optional Wetland Site ID: Remarks: (Explain alternative procedures here or in a separate report.) **HYDROLOGY** Wetland Hydrology Indicators: Secondary Indicators (minimum of two required) Primary Indicators (minimum of one is required; check all that apply) Surface Soil Cracks (B6) __ Surface Water (A1) ___ Water-Stained Leaves (B9) __ Drainage Patterns (B10) __ High Water Table (A2) _ Aquatic Fauna (B13) Moss Trim Lines (B16) _ Saturation (A3) ___ Dry-Season Water Table (C2) __ Marl Deposits (B15) ___ Water Marks (B1) ___ Hydrogen Sulfide Odor (C1) ___ Crayfish Burrows (C8) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) ___ Saturation Visible on Aerial Imagery (C9) __ Drift Deposits (B3) Presence of Reduced Iron (C4) ___ Stunted or Stressed Plants (D1) ___ Algal Mat or Crust (B4) ___ Recent Iron Reduction in Tilled Soils (C6) Geomorphic Position (D2) __ Iron Deposits (B5) ___ Thin Muck Surface (C7) Shallow Aquitard (D3) Inundation Visible on Aerial Imagery (B7) __ Other (Explain in Remarks) Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8) __ FAC-Neutral Test (D5) Field Observations: Surface Water Present? Yes _____ No ____ Depth (inches): _____ Yes ____ No_ 🗸 Depth (inches): Water Table Present? Yes ____ No ____ Depth (inches): _____ Saturation Present? Wetland Hydrology Present? Yes ____ _ No <u>---</u> (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks:

	٧	EGET	ATION -	Use	scientific	names	of	plants.
--	---	-------------	---------	-----	------------	-------	----	---------

Sampling Point: UP-1

	Absolute	Dominan	t Indicator	
Tree Stratum (Plot size: 30)		Species?		Dominance Test worksheet:
1. ACER-RUBUM	Part Carlo Carlo	yes		Number of Dominant Species
2 L L C L				That Are OBL, FACW, or FAC: (A)
2. Betula populifolia 3. Pinus stratus	1510	NO	TAC	Total Number of Dominant
3. PINUS STORUS	37.5	485	UPL	Species Across All Strata: (B)
the state of the s			-	
4				Percent of Dominant Species That Are OBL, FACW, or FAC: 50 (A/B)
5				That Are OBL, FACW, or FAC: (A/B)
6				Bassadan a la descurada ha at
				Prevalence Index worksheet:
7				Total % Cover of:Multiply by:
		= Total Co	over	OBL species x 1 =
Sapling/Shrub Stratum (Plot size: 15				FACW species x 2 =
Ac a the case	15.0	No	FAC	FAC species x 3 =
			-	FACU species x 4 =
2. Pinus strobus	15.0	NO	MANAGA	
3			OPC	UPL species x 5 =
				Column Totals: (A) (B)
4				Brouglance Index = B/A =
5				Prevalence Index = B/A =
6.				Hydrophytic Vegetation Indicators:
				1 - Rapid Test for Hydrophytic Vegetation
7.				2 - Dominance Test is >50%
		= Total Co	over	
Herb Stratum (Plot size:)				3 - Prevalence Index is ≤3.01
	2.5	NO		4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
1. Aster Spp. 2. Polystichum acresticha	10525	110	FACU	Problematic Hydrophytic Vegetation¹ (Explain)
3. Lycopodium clavatum	4-2	100	White	¹ Indicators of hydric soil and wetland hydrology must
4			FAC	be present, unless disturbed or problematic.
5				
				Definitions of Vegetation Strata:
6		<i>_</i>	/ 	Tree – Woody plants 3 in. (7.6 cm) or more in diameter
7.				at breast height (DBH), regardless of height.
8				
				Sapling/shrub – Woody plants less than 3 in. DBH
9				and greater than or equal to 3.28 ft (1 m) tall.
10				Herb - All herbaceous (non-woody) plants, regardless
11,				of size, and woody plants less than 3.28 ft tall.
		-		Mandanina Allunadu ina matata han 200 fi in
12,				Woody vines – All woody vines greater than 3.28 ft in height.
		= Total Co	over	
Woody Vine Stratum (Plot size:)				
1,		-		
2				
3				Hudranbudia
		e -	-0 2:	Hydrophytic Vegetation
4		j a		Present? Yes No
		= Total Co	over	S
Remarks: (Include photo numbers here or on a separate	sheet.)			
·	•			

Profile Desci	ription: (Describe to	he depth needs	d to docume	nt the indicat	or or confirm	n the absence of ir	ndicators.)	
Depth (inches)	Matrix Color (moist)	% Color	Redox F	eatures %Type	1 Loc²	Texture	Remarks	
0-6	A loyes	100				Loam	T TOTAL CONTROL OF THE PARTY OF	
6-12	BWI 10YR	(4)				5L		
12-18	BW2 1041		YR518	15% And	bran	E		
	000 2 1091	3/3 "	JICSIO_	130	M	130		
				(Red	A POST			
						-		
==								
		10			-3.			
¹Type: C=Co	ncentration, D=Depletion	n RM=Reduce	Matrix MS-I	Macked Sand		2l agation: DI	_=Pore Lining, M=Matrix	
Hydric Soil Ir	ndicators:	M, TOW-TOUGH	I Wattix, WO-I	viaskeu Saliu	Jianis.		Problematic Hydric So	
Histosol (,			Surface (S8) (L	RR R,		(A10) (LRR K, L, MLR	
Histic Epi Black His	pedon (A2)		LRA 149B)	(S9) (LRR R,	MI DA 440D		rie Redox (A16) (LRR K	
	Sulfide (A4)			eral (F1) (LRR			y Peat or Peat (S3) (LRI ce (S7) (LRR K, L)	K K, L, K)
	Layers (A5)	Loar	ny Gleyed Ma	trix (F2)	,	Polyvalue E	Below Surface (S8) (LRI	
	Below Dark Surface (A k Surface (A12)		leted Matrix (F ox Dark Surfa				Surface (S9) (LRR K, L) anese Masses (F12) (LR	
	ucky Mineral (S1)		leted Dark Sur				Floodplain Soils (F19) (N	
	eyed Matrix (S4)		ox Depression			Mesic Spoo	dic (TA6) (MLRA 144A,	
Sandy Re	edox (S5) Matrix (S6)						t Material (F21)	
	ace (S7) (LRR R, MLR	A 149B)					ow Dark Surface (TF12) lain in Remarks)	
							,	
Restrictive La	hydrophytic vegetation ayer (if observed):	and wetland hyd	Irology must b	e present, unle	ess disturbed	or problematic.		
Type:	-yo. (ii observed).							
Depth (inch	nes):					Hydric Soil Pres	sent? Yes	No.
Remarks:								

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: City/	County: Schoharie Sampling Date: 5.13.14
Applicant/Owner:	State: NY Sampling Point: WET 2
Investigator(s): KA - It	tion, Township, Range: Warner Jie Tower ROAD
Landform (hillslope, terrace, etc.): Hillslupe Local re	
Subregion (LRR or MLRA): MID ATCAMAC Lat: 42°37'39	
Soil Map Unit Name:	NWI classification: PFO
Are climatic / hydrologic conditions on the site typical for this time of year?	
Are Vegetation, Soil, or Hydrology significantly distu	
Are Vegetation, Soil, or Hydrology naturally problem	
	mpling point locations, transects, important features, etc.
(2)	Is the Sampled Area
Hydrophytic Vegetation Present? Yes No	within a Wetland? Yes No
Wetland Hydrology Present? Yes No	If yes, optional Wetland Site ID:
Remarks: (Explain alternative procedures here or in a separate report.)	ir yes, optional wetland Site ib.
Hem local Forester WETLAMD	
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) Water-Stained Leave	. ,
High Water Table (A2) Aquatic Fauna (B13)	
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Oc	dor (C1) Crayfish Burrows (C8)
	res on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Reduce	• • •
Algal Mat or Crust (B4) Recent Iron Reduction	· · ·
Iron Deposits (B5) Thin Muck Surface (,
Inundation Visible on Aerial Imagery (B7) Control Visible on Aerial Imagery (B7) Control Visible on Aerial Imagery (B7) Control Visible on Aerial Imagery (B7)	
Sparsely Vegetated Concave Surface (B8) Field Observations:	FAC-Neutral Test (D5)
0.6 1/1 0 10 11	4
Water Table Present? Yes No Depth (inches): Yes No Depth (inches): Surface Water Table Present? Yes No Depth (inches): Surface Water Present?	
Saturation Present? Yes No Depth (inches): 50	
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	evious inspections), if available:
Remarks:	

Tree Stratum (Plot size: 30 /	Absolute Dominant Indicato % Cover Species? Status	Unminance lest worksheet:
1. Isuga canadensis	62.5 785 FACE	Number of Dominant Species
2. Betula alleghaniens is	37.5 YES FAC	(1)
		Total Number of Dominant
3		Species / Islands / Islands (B)
4		 Percent of Dominant Species That Are OBL, FACW, or FAC:
5		- matrix est, internet, at the
6		Prevalence Index worksheet:
7		Total % Cover of: Multiply by:
	= Total Cover	OBL species x 1 =
Sapling/Shrub Stratum (Plot size:)		FACW species x 2 =
1. Tsuga Concdensis	15.0 NO FACU	FAC species x 3 =
2,		FACU species x 4 =
3		UPL species x 5 =
4		Column Totals: (A) (B)
5		Prevalence Index = B/A =
6		Hydrophytic Vegetation Indicators:
7		1 - Rapid Test for Hydrophytic Vegetation
···	= Total Cover	2 - Dominance Test is >50%
Llast Christian (District	= Total Cover	3 - Prevalence Index is ≤3.01
1. Sphagnum mass bishelle	85% NA	4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
2. Canex Lorida		
3		_
4,		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
5		
		Definitions of Vegetation Strata:
6		Tree – Woody plants 3 in. (7,6 cm) or more in diameter
7,		
8		eaphingsenias moody plante lede than e in BBH
9		and greater than or equal to 3.28 ft (1 m) tall.
10		Herb – All herbaceous (non-woody) plants, regardless
11,		of size, and woody plants less than 3.28 ft tall.
12		Woody vines – All woody vines greater than 3.28 ft in
	= Total Cover	height.
Woody Vine Stratum (Plot size:)		
1,		
2		
3:		_ Hydrophytic
4.		Vegetation
	= Total Cover	Present? Yes No
Remarks: (Include photo numbers here or on a separate		
()		

Profile Description: (Describe to the de	pth needed to document the i	ndicator or confirm	n the absence of indicators.)
Depth Matrix	Redox Features	s	Annua e retur
(inches) Color (moist) %	Color (moist) %		Texture Remarks
0-12" 104R 2/1	·————		BM- MUCK
211-18" LOYE COFT	-		LS
	<u> </u>		
	× 		
<u> </u>	N=====================================		
		:	· · · · · · · · · · · · · · · · ·
	:=		
			?
¹ Type: C=Concentration, D=Depletion, RN	1=Reduced Matrix, MS=Masked	Sand Grains	² Location: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators:			Indicators for Problematic Hydric Soils ³ :
Histosol (A1)	Polyvalue Below Surface	(S8) (LRR R ,	2 cm Muck (A10) (LRR K, L, MLRA 149B)
Histic Epipedon (A2)	MLRA 149B)		Coast Prairie Redox (A16) (LRR K, L, R)
Black Histic (A3) Hydrogen Sulfide (A4)	Thin Dark Surface (S9) (L		
Stratified Layers (A5)	Loamy Mucky Mineral (F1 Loamy Gleyed Matrix (F2)		Dark Surface (S7) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L)
Depleted Below Dark Surface (A11)	Depleted Matrix (F3)	,	Thin Dark Surface (S9) (LRR K, L)
Thick Dark Surface (A12)	Redox Dark Surface (F6)		Iron-Manganese Masses (F12) (LRR K, L, R)
Sandy Mucky Mineral (S1)	Depleted Dark Surface (F	7)	Piedmont Floodplain Soils (F19) (MLRA 149B)
Sandy Gleyed Matrix (S4)	Redox Depressions (F8)		Mesic Spodic (TA6) (MLRA 144A, 145, 149B)
Sandy Redox (S5)			Red Parent Material (F21)
Stripped Matrix (S6)	D)		Very Shallow Dark Surface (TF12)
Dark Surface (S7) (LRR R, MLRA 149	В)		Other (Explain in Remarks)
³ Indicators of hydrophytic vegetation and w	etland hydrology must be prese	ent unless disturbed	or problematic
Restrictive Layer (if observed):		and annous distances	- problemate.
Type:			
Depth (inches):			Hydric Soil Present? Yes No
Remarks:			Hydrid doi: 1 res No
Remarks.			

	ORW - Northcentral and Northeast Region 3-75-70
Project/Site: SC-66 City	y/County: SChonarie Sampling Date:
Applicant/Owner:	State: VY Sampling Point: UP-2
Investigator(s): KA-DTC Sec	ction, Township, Range: Warnerville Tower RD
1111 5.00	relief (concave, convex, none): Slope (%): 😂
Subregion (LRR or MLRA): MIO ATTAMV Lat: 42°37'39	1.61N Long: 74°26'96.81 W Datum: NAD 198
Soil Map Unit Name:	
Are climatic / hydrologic conditions on the site typical for this time of year?	NWI classification:
	20-1-1-2 (III)
Are Vegetation, Soil, or Hydrology significantly dis	· · · · · · · · · · · · · · · · · · ·
Are Vegetation, Soil, or Hydrology naturally proble	matic? (If needed, explain any answers in Remarks,)
SUMMARY OF FINDINGS – Attach site map showing sa	ampling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Remarks: (Explain alternative procedures here or in a separate report.)	Is the Sampled Area within a Wetland? If yes, optional Wetland Site ID:
HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Secondary Indicators (minimum of two required) Surface Soil Cracks (B6)
Surface Water (A1) Water-Stained Lea	
High Water Table (A2) Aquatic Fauna (B1	· · /
Saturation (A3) Marl Deposits (B15	
Water Marks (B1) Hydrogen Sulfide (
Sediment Deposits (B2) Oxidized Rhizosph	eres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Reduc	ced Iron (C4) Stunted or Stressed Plants (D1)
1	tion in Tilled Soils (C6) Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surface	
Inundation Visible on Aerial Imagery (B7) Other (Explain in R	,
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
Field Observations: Surface Water Present? Yes No Depth (inches):	
Saturation Present? Yes No Depth (inches): (includes capillary fringe)	Wetland Hydrology Present? Yes No
Describe Recorded Data (stream gauge, monitoring well, aerial photos, p	revious inspections), if available:
Remarks:	

VEGETATION -	Use	scientific	names	of	plants.
--------------	-----	------------	-------	----	---------

Sampling Point: UP-2

	Absolute Dominant Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30/	% Cover Species? Status	Number of Dominant Species
1 Tsuga canadensis	85.0 yes FACU	That Are OBL, FACW, or FAC: (A)
2		Total Number of Dominant
3		Species Across All Strata: (B)
4		Percent of Dominant Species
5		That Are OBL, FACW, or FAC: (A/B)
6		Prevalence Index worksheet:
7		Total % Cover of: Multiply by:
	= Total Cover	OBL species x 1 =
Sapling/Shrub Stratum (Plot size:)		FACW species x 2 =
1. TSUGE Canadensis	15.0 NO FACU	FAC species x 3 =
		FACU species x 4 =
3		UPL species x 5 =
		Column Totals: (A) (B)
4		Prevalence Index = B/A =
5.		
6.		Hydrophytic Vegetation Indicators:
7		1 - Rapid Test for Hydrophytic Vegetation
	= Total Cover	2 - Dominance Test is >50%
Herb Stratum (Plot size:)		3 - Prevalence Index is ≤3.0¹ 4 - Morphological Adaptations¹ (Provide supporting
1.Lycopadilm venustulum	37.5 Yrs FACU	data in Remarks or on a separate sheet)
		Problematic Hydrophytic Vegetation ¹ (Explain)
3.		¹ Indicators of hydric soil and wetland hydrology must
4		be present, unless disturbed or problematic.
5		Definitions of Vegetation Strata:
6		
7		Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
9		Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
10.		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
11		Mandustines All woods vines greates then 2.00 ft in
12		Woody vines – All woody vines greater than 3.28 ft in height.
	= Total Cover	
Woody Vine Stratum (Plot size:)		
1		
2,		
3		Hydrophytic
4.		Vegetation Present? Yes No
	= Total Cover	Present? Yes No
Remarks: (Include photo numbers here or on a separate		
·	•	

Depth	cription: (Describe t Matrix	to the dep		Features	outor o.		tale absence of	marcators.,	
(inches)	Color (moist)	%	Color (moist)		ype ¹	Loc ²	Texture	Remark	is
-411	104R 3/3						hoam		
11-1411	14R 414	0					PSC		
111-20	110425/	2					PSI		
	10 11-0/								
				D) ;					
Гуре: C=C	oncentration, D=Depl	letion, RM:	=Reduced Matrix, MS	=Masked Sa	and Grain	ns.	² Location: F	PL=Pore Lining, M=1	Matrix.
	Indicators:		1,11,11,11,11,11					Problematic Hydr	
Histosol	• ,		Polyvalue Belov		3) (LRR	R,		k (A10) (LRR K, L,	,
	pipedon (A2) istic (A3)		MLRA 149B) Thin Dark Surfa		D MIE	2A 149R)		airie Redox (A16) (L ky Peat or Peat (S3	
	en Sulfide (A4)		Loamy Mucky M					ace (S7) (LRR K, L	
	d Layers (A5)		Loamy Gleyed I	Matrix (F2)		,	Polyvalue	Below Surface (S8	(LRR K, L)
	d Below Dark Surface	e (A11)	Depleted Matrix					Surface (S9) (LRR	
	ark Surface (A12) Jucky Mineral (S1)		Redox Dark Sur Depleted Dark S					ganese Masses (F1: Floodplain Soils (F	
	Gleyed Matrix (S4)		Redox Depressi					odic (TA6) (MLRA 1	
	Redox (S5)							nt Material (F21)	
	Matrix (S6)	II DA 440E	. \					llow Dark Surface (1	ΓF12)
Daik Su	ırface (S7) (LRR R, M	ILKA 149E	•)				Other (Ex	plain in Remarks)	
	f hydrophytic vegetat		etland hydrology mus	t be present,	unless o	disturbed	or problematic.		
	Layer (if observed):								
Type:									
Depth (in	ches):						Hydric Soil Pro	esent? Yes	No
emarks:							1571		

WETLAND HYDROLOGY ANALYSIS

SITE ID: SC-66

SITE NAME: Tower Road

LOCATION: Warnerville, Schoharie County, New York

WATERSHED: Schoharie – 02020005

SITE TYPE: Wetland Mitigation

LANDOWNER: Kenneth A. Gori, Owner

The following is a summary of the hydrology at the SC-66 property for wetland mitigation relating to the wetland disturbance along the Constitution Pipeline corridor. Kleinschmidt conducted several site visits to evaluate the existing and proposed wetlands and this memorandum summarizes the hydrologic conditions that assisted in the final design.

GROUNDWATER

A small perennial stream associated with series of beaver dams flows south through the middle of the property and is flanked by a wetland complex that includes forested and open wetland types. This headwater system is located at the start of a small valley that collects runoff and groundwater from the northern, eastern and western sides of the property. There are approximately 30 acres of existing wetland surrounding the beaver dams. Field investigations indicated that the adjacent upland area to the southwest of the lower beaver dams would provide an ideal opportunity for wetland creation as the topography is a few inches above the elevations required for a wetland in this area.

Soil boring and soil pit tests were conducted to investigate soil characteristics and hydrology. In areas of proposed wetland creation, redoximorphic features (indicative of saturated soils at least during a portion of the year) were found approximately 1' below land surface. The groundwater table was encountered between 1.0' and 12.2' below land surface in the proposed establishment area. These redoximorphic feature elevations and groundwater levels were used as a guide to determine the depth of excavation suitable for wetland creation. A shallow scrape of 0.5'-1' is proposed to create 1.5 acres of PFO wetland.

To observe the trends in groundwater data, soil boring and soil pit test data for SC-66 was also analyzed using reference data observed over the past five years at a USGS well approximately 4.25 miles away. This analysis compared the reading at the USGS well on the day of the soil boring to the well's overall dataset, and was applied to the water level at the site observed through the soil boring and soil pit tests. This made it possible to normalize the range of water depths on the site to the USGS well data, providing a surrogate for on-site long-term data. Comparison with the long-term data validated the chosen wetland types and ensured groundwater can function as a viable primary source of hydrology for the site.

SURFACE RUNOFF

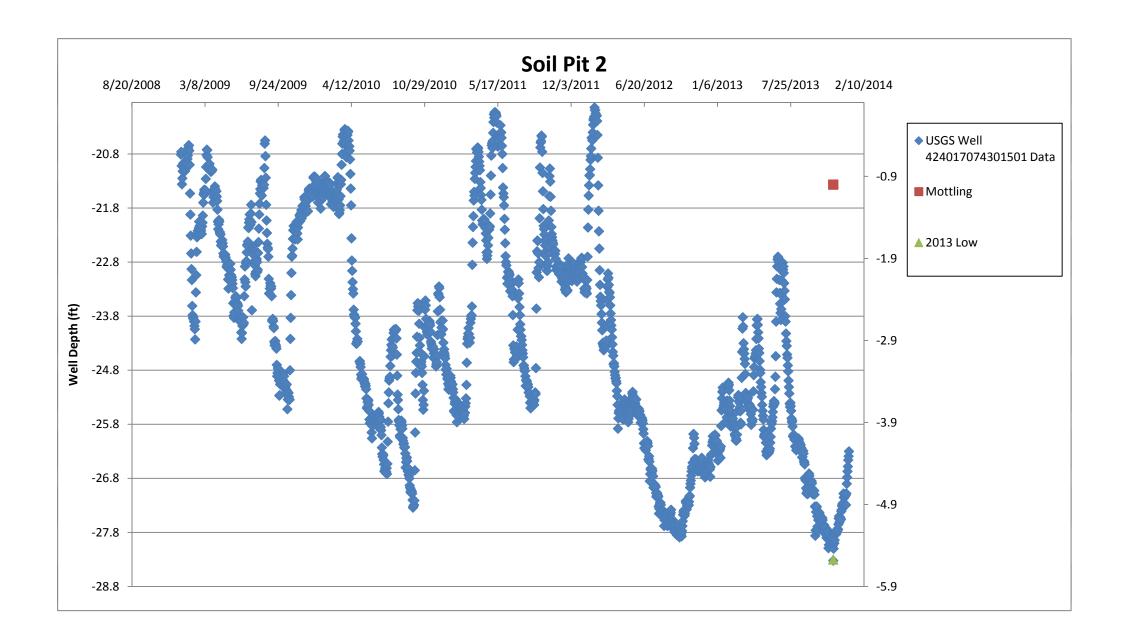
The property is located in a bowl-shaped feature, with higher elevations to three sides. The wetlands collect sheet flow and shallow groundwater drainage from the surrounding hills as it flows into the beaver ponds. Field investigations indicated that the hillsides remain wet for a significant portion of the year, providing a source of hydrology for the created wetland. Runoff has a strong horizontal flow component in the contributing watershed because of a dense basal till layer that impedes vertical infiltration of runoff.

Site Identifier: SC-66

Geotech: Haley and Aldrich

Drill Rig: GeoLogic NY, Inc./North Star Drilling

					Groundwater Depth					
					24-hr Reading a	at Boring ¹	BLS: Below Land Surface (Negative BLS is above ground surface)			
				Approximate						
				Depth to						
				Observed	Standing Water		10th	25th	75th	90th
			Ground Surface	Mottled Soil (ft.	at Time of	Elevation	percentile	Percentile	Percentile	Percentile
Boring ID	Longitude	Latitude	Elevation	BLS)	Boring (ft BLS)	(ft)	Depth (ft BLS)	Depth (ft BLS)	Depth (ft BLS)	Depth (ft BLS)
SC-66-01	74° 27' 2.773" W	42° 37' 25.290" N		-	2	1630.4	17.8	19.0	22.3	23.5
SC-66-02	74° 26' 59.688" W	42° 37' 27.067" N		-	12.2	1635.6	28.0	29.2	32.5	33.7
SC-66-03	74° 26' 54.674" W	42° 37' 34.785" N		-	0.5	1625.8	16.3	17.5	20.8	22.0


Notes:


1. Geotech reading collected on 31 October 2013.

2. 10th-90th percentile water depths calculated based on a comparison of a same day reading at a nearby USGS well and its data set from the past 5 years

							10th			
							percentile	25th	75th	90th
						Water depth at	water	percentile	percentile	percentile
					Distance from	time of survey	depth	water depth	water depth	water depth
US	GS Well ID	Longitude	Latitude	Date	Project Site	(BLS)	(BLS)	(BLS)	(BLS)	(BLS)
4240	17074301501	74°30'15.0" W	42°40'16.9" N	4-Jun-14	4.25 miles	5.57	21.35	22.59	25.88	27.09
4240	17074301501	74°30'15.0" W	42°40'16.9" N	14-May-14	4.25 miles	5.59	21.35	22.59	25.88	27.09

	USGS Well	USGS Well	SC-66-02	SC-66-01	Soil Pit 2
Mottling:	-21.35	-21.35	0.0	0.0	-1
Measured Water Level	-22.21	-21.96	-12.2	-2	-1.4
2013 Low:	-28.32	-28.32	-98.88	-16.21	-5.57
Date:	4-Jun-14	14-May-14	4-Jun-14	4-Jun-14	14-May-14

SITE SC-66: TOWER ROAD WETLAND MITIGATION PROJECT CONSTITUTION PIPELINE, LLC

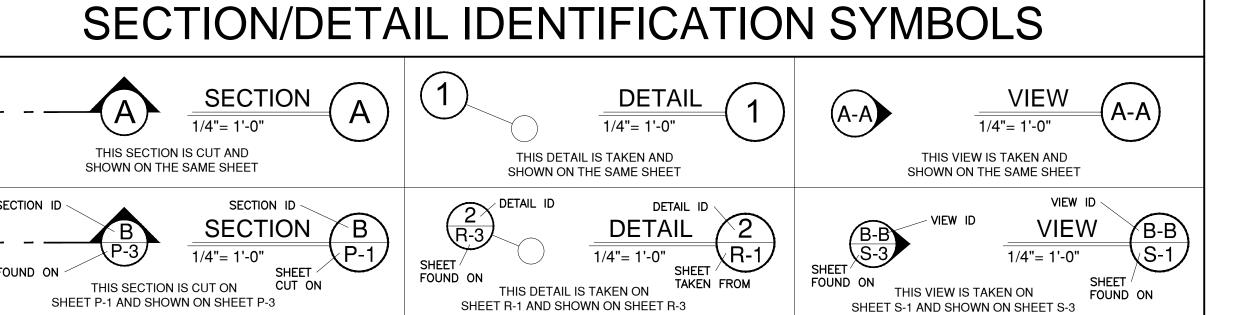
DRAWING LIST							
SHEET NUMBER	DESCRIPTION						
1	COVER SHEET						
2	GENERAL NOTES						
3	EXISTING CONDITIONS						
4	WETLANDS METES AND BOUNDS TABLES						
5	DEMOLITION PLAN						
6	SITE PLAN						
7	SITE PLAN - S7						
8	SITE PLAN - S8						
9	SITE PLAN — S9						
10	SITE PLAN - S10						
11	SITE PLAN - S11						
12	SECTIONS						
13	EASEMENT PLAN						
14	CONSERVATION EASEMENT METES AND BOUNDS TABLES						
15	PLANTING NOTES AND TABLES						
16	PLANTING PLAN						
17	DETAILS						
18	EROSION AND SEDIMENT CONTROL DETAILS						

OWNER: KENNETH A. GORI

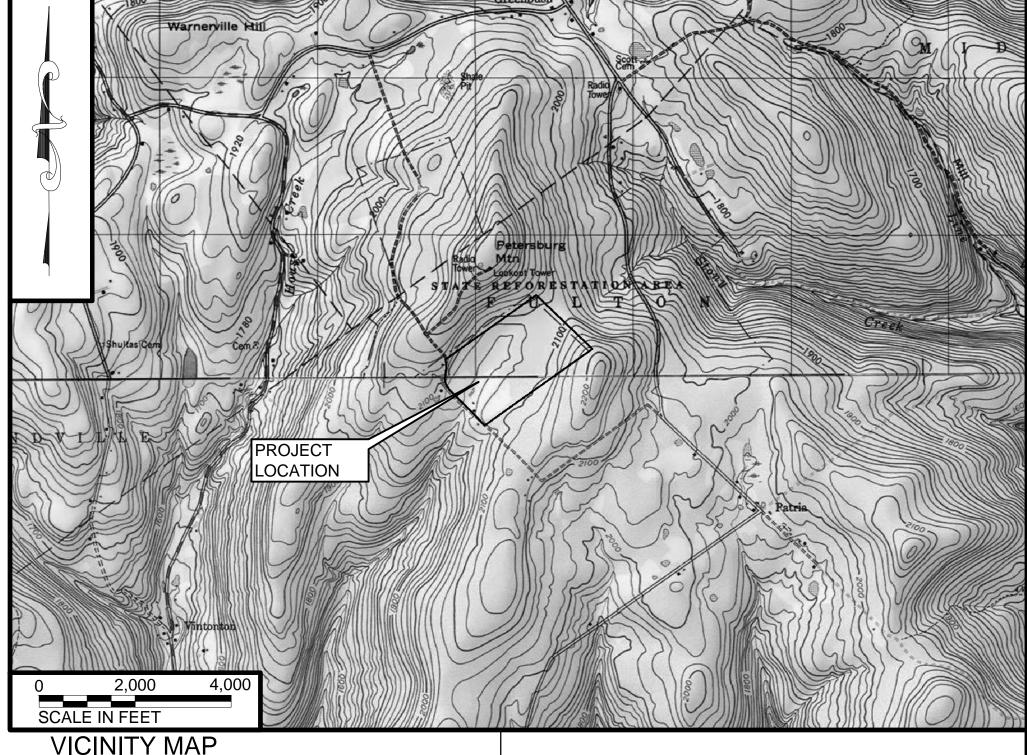
TAX PARCEL ID: 93.-2-10

ACREAGE OF PARCEL: 97.4 ACRES

DISTURBED ACREAGE: 4.9 ACRES


ADDRESS: 288 TOWER ROAD

WARNERVILLE, NY 12187


HUC 8: SCHOHARIE - 02020005

OTES:

- 1. SECTIONS ARE ALPHABETICAL.
- 2. DETAILS ARE NUMERICAL.
- 3. VIEWS ARE DOUBLE ALPHABETICAL.

(ELEVATIONS ARE IN METERS)

NOTES:

- 1. TOPOGRAPHIC AND PARCEL BOUNDARY SURVEY DATA BASED ON 2013/2014 SURVEY FROM MICHAEL BAKER CORPORATION. COORDINATES SHOWN ARE EXPRESSED IN US SURVEY FEET AND REFERENCED TO NORTH AMERICAN DATUM OF 1983 (NAD 83), UTM ZONE 18.
- 2. WETLAND BOUNDARIES BASED ON 2013/2014 DELINEATION FROM KLEINSCHMIDT ASSOCIATES.

							IPELINE, LLC FIGATION		
				SITE SC-66: TOWER ROAD					
				COVER SHEET					
	-	-	-	Klein	ischm	nidt (141 Main Street P.O. Box 650 Pittsfield, Maine 04967 Telephone: (207) 487-3328 Fax: (207) 487-3124		
No. Revision	Date	Drawn	Checked			www.KleinschmidtUSA.com			
THIS DOCUMENT IS A DRAFT VERSION PROVIDED FOR THE CONVENIENCE OF THE USER AND IS NOT AN INSTRUMENT OF SERVICE OF KLEINSCHMIDT ASSOCIATES UNLESS IT BEARS THE PROFESSIONAL ENGINEER'S STAMP AND ORIGINAL SIGNATURE. THIS DOCUMENT IS NOT A PRODUCT, AND TRANSFER OF A VERSION OF AN INSTRUMENT OF SERVICE BY ELECTRONIC MEDIA IS NOT DEEMED A SALE. THIS DOCUMENT MAY NOT BE ALTERED BY OTHERS OR USED FOR PROJECTS OR PURPOSES OTHER THAN THE PROJECT FOR WHICH IT WAS PREPARED, WITHOUT THE EXPRESS WRITTEN PERMISSION OF KLEINSCHMIDT ASSOCIATES.	Designed DDW	Drawn DDW	Checked TAK	Project No. 3786-001	Date Revised 7-31-2014	Drawing No.	1		

GENERAL NOTES

- 1. SUBCONTRACTOR SHALL PERFORM ALL WORK IN ACCORDANCE WITH THESE DRAWINGS AND THE PROJECT SPECIFICATIONS.
- 2. IT IS THE RESPONSIBILITY OF THE SUBCONTRACTOR TO REVIEW ALL OF THE DRAWINGS, SPECIFICATIONS, AND REFERENCED DOCUMENTS ASSOCIATED WITH THE PROJECT PRIOR TO THE INITIATION OF CONSTRUCTION. SHOULD THE SUBCONTRACTOR FIND ANY CONFLICT WITH THE DOCUMENTS, IT IS THE SUBCONTRACTOR'S RESPONSIBILITY TO NOTIFY KLEINSCHMIDT AND THE ENGINEER OF RECORD, IN WRITING, PRIOR TO THE START OF CONSTRUCTION. FAILURE BY THE SUBCONTRACTOR TO NOTIFY KLEINSCHMIDT AND THE ENGINEER OF RECORD SHALL CONSTITUTE ACCEPTANCE OF FULL RESPONSIBILITY BY THE SUBCONTRACTOR TO COMPLETE THE SCOPE OF WORK AS DEFINED BY THE DRAWINGS AND SPECIFICATIONS AND IN FULL COMPLIANCE WITH LOCAL REGULATIONS AND CODES.
- 3. IT IS THE RESPONSIBILITY OF THE SUBCONTRACTOR TO FULFILL ALL REQUIREMENTS OF THE CONTRACT AND ALL AMENDMENTS THERETO, INCLUDING BUT NOT LIMITED TO GENERAL CONDITIONS, SPECIAL CONDITIONS, TECHNICAL SPECIFICATIONS AND THESE DRAWINGS IN ORDER TO COMPLETE THIS PROJECT.
- . ALL EXISTING AND PROPOSED DIMENSIONS, FEATURES, UTILITIES AND ELEVATIONS SHOWN ON THE PLANS SHALL BE FIELD VERIFIED BY THE SUBCONTRACTOR PRIOR TO CONSTRUCTION. SUBCONTRACTOR SHALL NOTIFY KLEINSCHMIDT, IN WRITING, IF ANY DISCREPANCIES EXIST PRIOR TO PROCEEDING WITH THE CONSTRUCTION TO OBTAIN NECESSARY PLAN CHANGES. NO EXTRA COMPENSATION SHALL BE PAID TO THE SUBCONTRACTOR FOR WORK HAVING TO BE REDONE DUE TO ERRORS & OMISSIONS SHOWN ON THESE PLANS IF SUCH NOTIFICATION HAS NOT BEEN GIVEN. KLEINSCHMIDT RESERVES THE RIGHT TO MODIFY THESE PLANS.
- 5. SUBCONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, LAYOUT AND EXISTING CONDITIONS SHOWN PRIOR TO SHOP DRAWING SUBMITTAL, ORDERING MATERIAL, START OF FABRICATION, OR START OF CONSTRUCTION. SUBCONTRACTOR SHALL NOTIFY KLEINSCHMIDT OF DISCREPANCIES.
- 6. THE SUBCONTRACTOR SHALL BE FAMILIAR WITH ALL APPLICABLE FEDERAL, STATE, AND LOCAL APPROVALS AND PERMITS FOR THE PROJECT AND SHALL HAVE A COPY OF RELEVANT PLANS AND PERMITS ON SITE AT ALL TIMES. THE SUBCONTRACTOR SHALL NOT PROCEED WITH THEIR WORK UNTIL ALL RELEVANT PERMITS ARE OBTAINED.
- 7. THE SUBCONTRACTOR IS RESPONSIBLE FOR PROTECTING THE ENVIRONMENT.
- 8. SUBCONTRACTOR SHALL SCHEDULE WORK IN COOPERATION WITH THE OWNER AND KLEINSCHMIDT.
- 9. SUBCONTRACTOR SHALL PROVIDE SUBMITTALS AND RECEIVE KLEINSCHMIDT'S APPROVAL FOR ALL STRUCTURAL AND MISCELLANEOUS METAL ITEMS AND CONCRETE REINFORCEMENT PRIOR TO FABRICATION.
- 10. SUBCONTRACTOR SHALL CLEAN UP ANY SPILLS OR DEBRIS CAUSED BY CONSTRUCTION.
- 11. SUBCONTRACTOR SHALL REPAIR ANY PORTIONS OF THE SITE THAT ARE DAMAGED DURING CONSTRUCTION, AND PERFORM LANDSCAPING AND SITE REMEDIATION AS NECESSARY TO LEAVE THE WORK AREA AS CLOSE TO ORIGINAL CONDITION AS POSSIBLE.
- 12. ALL WORK SHALL BE CONDUCTED PER THE SOIL EROSION AND SEDIMENT CONTROL PLAN.
- 13. ALL WORK SHALL BE PERFORMED IN ACCORDANCE WITH ALL LOCAL, STATE, AND FEDERAL REGULATIONS.
- 14. THE SUBCONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK. THE SUBCONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE MEANS, METHODS, TECHNIQUE AND PROCEDURE OF CONSTRUCTION; INCLUDING, BUT NOT LIMITED TO, BRACING OF THE WORK AS REQUIRED TO PROTECT THE WORK UNTIL THE PROJECT IS COMPLETE. SUBCONTRACTOR SHALL NOT PLACE EQUIPMENT OR MATERIALS OUTSIDE OF THE LIMIT OF WORK SHOWN ON THE PLANS WITHOUT WRITTEN CONSENT FROM KLEINSCHMIDT AND THE CONSERVATION DISTRICT.
- 15. ATTENTION ALL SUBCONTRACTORS: LOCATIONS OF ALL EXISTING UTILITIES SHOWN HEREON HAVE BEEN DEVELOPED FROM ABOVE—GROUND INSPECTION OF THE SITE. COMPLETENESS AND ACCURACY OF TYPE, SIZE, DEPTH OR HORIZONTAL LOCATION OF UNDERGROUND FACILITIES OR STRUCTURES CANNOT BE GUARANTEED. CONTRACTORS MUST VERIFY LOCATION AND DEPTH OF ALL UNDERGROUND UTILITIES. SEE STATE SPECIFIC REQUIREMENTS. THIS PAGE.
- 16. THE SUBCONTRACTOR SHALL BE RESPONSIBLE FOR AND PROVIDE ALL CONSTRUCTION STAKEOUT AND SURVEY WORK NECESSARY FOR THEIR WORK, UNLESS ARRANGED OTHERWISE WITH KLEINSCHMIDT. ANY DISCREPANCIES FOUND DURING THE COURSE OF THE SURVEY WORK
- SHALL BE BROUGHT TO THE IMMEDIATE ATTENTION OF KLEINSCHMIDT.

 17. THE SUBCONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY PRECAUTIONS AND PROGRAMS IN CONNECTION WITH THE WORK.
- 18. THE SUBCONTRACTOR SHALL BE RESPONSIBLE TO SECURE ALL MATERIAL, EQUIPMENT, SUPPLIES, ETC., STORED AT THE SITE.
- 19. THE SUBCONTRACTOR SHALL BE RESPONSIBLE TO CLEAN PROJECT SITE OF ALL WASTE, FILL, DEBRIS, ETC. DAILY AND PRIOR TO LEAVING THE SITE
- 20. ANY DAMAGE TO THE UTILITIES SHALL BE THE SOLE RESPONSIBILITY OF THE SUBCONTRACTOR, AND ALL COST FOR REPAIRS SHALL BE BORNE BY THE SUBCONTRACTOR.
- 21. NO TREES SHALL BE DISTURBED UNLESS INDICATED ON THE PLANS THAT THEY ARE TO BE REMOVED.
- 22. NO WETLANDS SHALL BE DISTURBED UNLESS INDICATED ON THE PLANS AND ALL APPROPRIATE PERMITS ARE IN PLACE.
- 23. THE SUBCONTRACTOR SHALL COMPLY WITH ALL CONDITIONS CONTAINED IN RELEVANT PERMITS ISSUED FOR THIS PROJECT.

- 24. SURVEY DATA ARE BASED ON TOPOGRAPHIC SURVEY BY MICHAEL BAKER CORPORATION. COORDINATES SHOWN ARE EXPRESSED IN U.S. SURVEY FEET AND REFERENCED TO THE NORTH AMERICAN DATUM OF 1983 (NAD 83), UTM ZONE 18.
- 25. WETLAND BOUNDARIES BASED ON 2013/2014 DELINEATION BY KLEINSCHMIDT. WETLANDS WERE DELINEATED BASED ON THE USACE 2012 REGIONAL SUPPLEMENT TO THE CORPS OF ENGINEERS WETLAND DELINEATION MANUAL: NORTHCENTRAL AND NORTHEAST REGION (VERSION 2.0)
- 26. THE SUBCONTRACTOR SHALL BE ADVISED THAT THE PROJECT MAY BE LOCATED IN AN AREA PRONE TO FLOODING AND SEVERE WEATHER. THE SUBCONTRACTOR SHALL TAKE NECESSARY PRECAUTIONS TO PROTECT THE PROJECT WHILE UNDER CONSTRUCTION, WHICH MAY INCLUDE SEQUENCING THE PROJECT TO PROTECT TEMPORARY AND PERMANENT STRUCTURES. THIS INCLUDES, BUT IS NOT LIMITED TO, PROTECTION FROM STORMS, FLOODS, WIND, AND RECREATIONAL USERS. THE SUBCONTRACTOR IS SOLELY RESPONSIBLE FOR THE PROTECTION OF THE PROJECT SITE, TEMPORARY FACILITIES, FALSEWORK, EQUIPMENT, PERSONNEL, WORK, MATERIALS, AND OTHER PROPERTIES, THE PUBLIC, OR INDUSTRY.
- 27. EVERY SUBCONTRACTOR SHALL COOPERATE WITH AND MAKE ALLOWANCES FOR OTHER SUBCONTRACTORS.
- 28. SUBCONTRACTOR SHALL PARK IN DESIGNATED AREAS ONLY.
- 29. TO THE GREATEST EXTENT POSSIBLE ALL TRAFFIC SHALL REMAIN ON DESIGNATED TRAVELWAYS. ANY DAMAGE TO TURF OR FIELDS SHALL BE REPORTED AND REPAIRED IMMEDIATELY BY THE SUBCONTRACTOR.
- 30. ALL SUBCONTRACTORS SHALL SUBMIT THE FOLLOWING FOR APPROVAL:
 PHASING AND SEQUENCING PLAN: SUBMIT PLAN NO LESS THAN 14 DAYS PRIOR TO COMMENCING WORK.
 - DAYS PRIOR TO COMMENCING WORK.

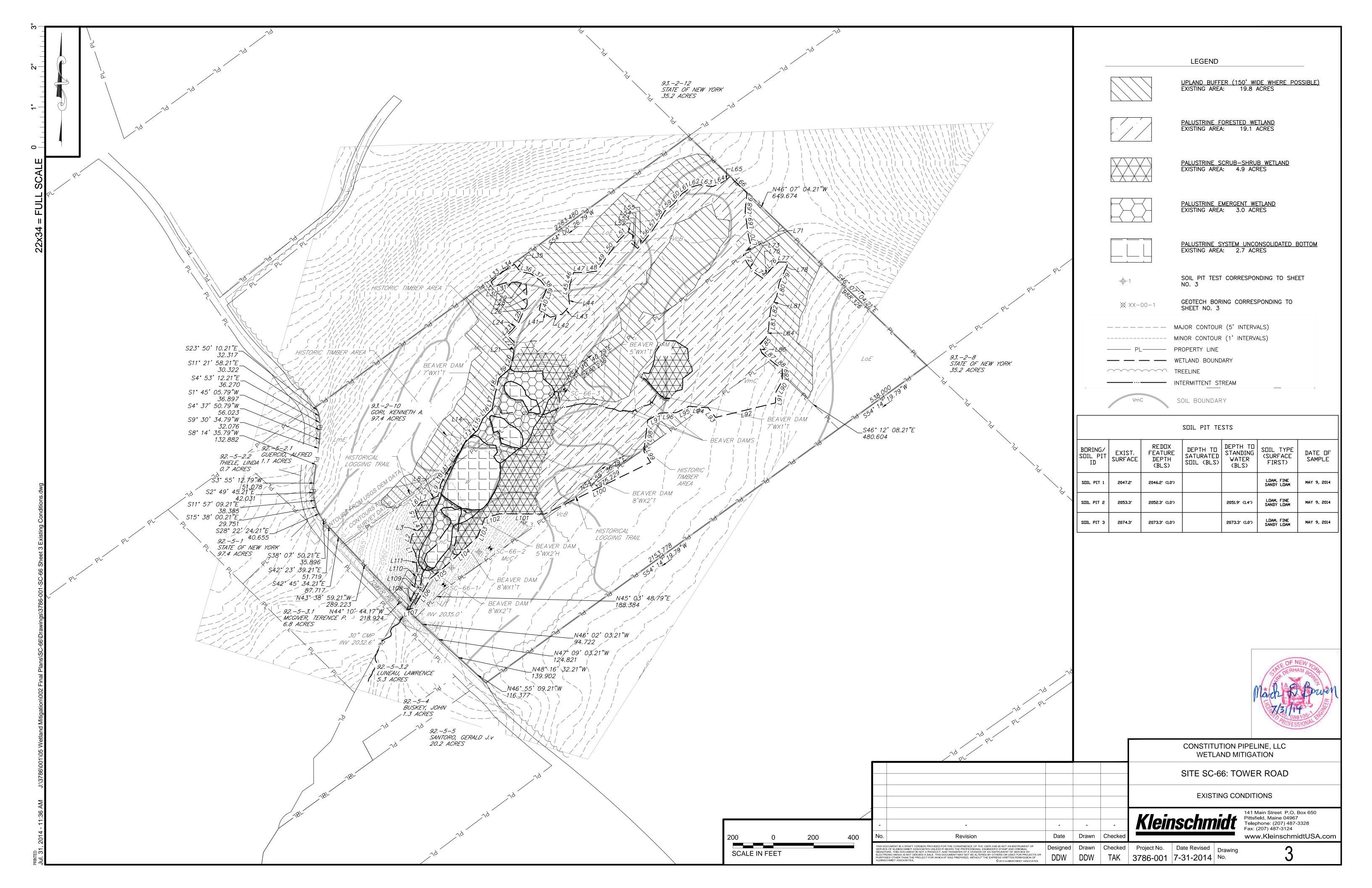
 POLLUTION PREVENTION AND CONTROL PLAN: SUBMIT SITE SPECIFIC
- PLAN NO LESS THAN 14 DAYS PRIOR TO COMMENCING WORK.

 SITE SPECIFIC SAFETY PLAN: SUBMIT PLAN NO LESS THAN 14 DAYS PRIOR TO COMMENCING WORK.
- 30. ALL EQUIPMENT IS TO BE IN COMPLIANCE WITH ALL OSHA AND DOSH SAFETY SPECIFICATIONS INCLUDING, FUNCTIONING BACKUP ALARMS AND MIRRORS FOR SAFE BACKING.
- 31. ALL HEAVY EQUIPMENT IS TO BE PROPERLY MAINTAINED SUCH THAT ALL ACCESSORIES ARE FUNCTIONING ACCORDING TO THE MANUFACTURER'S SPECIFICATIONS.
- 32. THE SUBCONTRACTOR SHALL IMMEDIATELY NOTIFY KLEINSCHMIDT AND CONSTRUCTION MANAGER OF ANY UNINTENTIONAL RELEASE OF ANY CHEMICAL (INCLUDING BUT NOT LIMITED TO, DIESEL FUEL, HYDRAULIC OIL, HERBICIDE) WHILE ON THE PROJECT SITE AND SHALL IMMEDIATELY TAKE MEASURES TO CONTAIN AND CLEAN UP SUCH SPILLED MATERIALS, INCLUDING THE REMOVAL OF CONTAMINATED SOIL. THE SUBCONTRACTOR SHALL, AT ALL TIMES, HAVE EQUIPMENT AND SUPPLIES READILY AVAILABLE TO ADEQUATELY CONTROL AND CLEAN UP ANY CHEMICAL SPILLS. THE SUBCONTRACTOR SHALL ALSO BE RESPONSIBLE FOR NOTIFICATION OF ALL APPLICABLE AGENCIES IN THE EVENT OF AN UNCONTROLLED CHEMICAL RELEASE. THE SUBCONTRACTOR IS SOLEY RESPONSIBLE FOR ALL COSTS ASSOCIATED WITH THE SPILL, INCLUDING SITE CLEANUP, DISPOSAL OF MATERIAL, AND COSTS FOR DELAYS TO THE PROJECT SCHEDULE CAUSED BY THE SPILL.

NEW YORK GENERAL NOTES

- 1. THE SUBCONTRACTOR WILL BE RESPONSIBLE FOR CONDUCTING UNDERGROUND UTILITY CHECKS, IN ACCORDANCE WITH STATE REGULATIONS. THE SUBCONTRACTOR WILL BE RESPONSIBLE FOR COORDINATING WITH DIG SAFELY NEW YORK (1-800-962-7962) A MINIMUM OF THREE (3) FULL WORKING DAYS IN ADVANCE OF ANY DIGGING ACTIVITY. SHOULD ANY UTILITIES BE LOCATED THAT ARE IN CONFLICT WITH THE DESIGN, THE SUBCONTRACTOR SHALL IMMEDIATELY REPORT THESE CONFLICTS IN WRITING TO KLEINSCHMIDT.
- 2. ALL MATERIALS SHALL BE PROVIDED AND WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE NEW YORK STATE DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS UNLESS NOTED OTHERWISE.
- 3. ALL MATERIALS SHALL BE PROVIDED AND WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION REQUIREMENTS FOR SOIL AND EROSION PROTECTION.

EXCAVATION CONTRACTOR NOTES


- 1. EXCAVATION SUBCONTRACTOR IS RESPONSIBLE FOR ALL SHORING REQUIRED DURING EXCAVATION. THIS AND ALL OTHER SITE WORK MUST BE IN ACCORDANCE WITH CURRENT OSHA STANDARDS.
- 2. NO CONSTRUCTION OR FABRICATION SHALL BEGIN UNTIL THE EXCAVATION SUBCONTRACTOR THOROUGHLY REVIEWS AND UNDERSTANDS ALL PLANS AND OTHER DOCUMENTS BY ALL PERMITTING AUTHORITIES.
- 3. CONSERVATION DISTRICT EROSION AND SEDIMENT CONTROL ADEQUACY LETTER TO BE APPROVED PRIOR TO SITE DISTURBANCE, AS REQUIRED BY THE CONSERVATION DISTRICT.
- 4. NO EARTH MOVING ACTIVITIES SHALL BEGIN PRIOR TO THE INSTALLATION OF THE TREE OR RESTRICTED AREA PROTECTIVE FENCING, AS REQUIRED BY THESE PLANS.
- 5. ANY SOLID WASTE FROM THE SITE SHALL BE DISPOSED OF BY EXCAVATION SUBCONTRACTOR IN ACCORDANCE WITH ALL LOCAL, STATE AND FEDERAL REGULATIONS.
- 6. WATER THAT ACCUMULATES IN OPEN TRENCHES WILL BE COMPLETELY REMOVED BY PUMPING BEFORE CONSTRUCTION AND/OR BACKFILLING BEGINS. WATER MUST BE PUMPED THROUGH A FILTER BAG ON TO A STABLE SURFACE OR INTO THE SEDIMENT BASIN. CONCRETE SHALL BE PLACED IN A CLEAN DRY TRENCH ONLY.

- 7. EXCAVATIONS OR TRENCHING WITHIN THE CLOSE PROXIMITY TO UNDERGROUND FACILITIES OR UTILITY POLES WILL REQUIRE PROTECTION TO PREVENT DAMAGE OR INTERRUPTION OF SERVICE. THE COST TO PROVIDE THE PROTECTION WILL BE BORNE BY THE EXCAVATION SUBCONTRACTOR.
- 8. COMPACTION IN FILL AREAS BENEATH ALL PROPOSED STRUCTURES SHOULD MEET ALL MANUFACTURER AND TOWNSHIP REQUIREMENTS AND BE EQUAL TO THE 98% MODIFIED PROCTOR DENSITY, AT A MINIMUM.
- 9. ALL CONCRETE UTILIZED ON SITE SHALL BE 4,000 PSI (MINIMUM 28 DAY COMPRESSIVE STRENGTH) WITH 5% AIR ENTRAINMENT, UNLESS OTHERWISE NOTED.

			SC-	66 SOIL DATA					
						RESTRICTIVE LAYER			
SOIL SYMBOL	SOIL NAME	SLOPE (%)	HSG	FROST ACTION	KF (WHOLE SOIL)	DEPTH TO FRAGIPAN (IN)	DEPTH TO LITHIC BEDROCK (IN)		
CNC	CHIPPEWA AND NORWICH VERY STONY SOILS	0-15	D	HIGH	N/A	13.0	>78.7		
LME	LORDSTOWN CHANNERY SILT LOAM	25-35	С	MODERATE	0.24	>78.7	27.2		
LOE	LORDSTOWN AND OQUAGA VERY STONY SOILS	0-35	С	MODERATE	0.24	>78.7	27.2		
MCC	MARDIN CHANNERY SILT LOAM	8-15	D	MODERATE	0.24	22.0	>78.7		
VCB	VOLUSIA CHANNERY SILT LOAM	3-8	D	HIGH	0.28	16.9	>78.7		
VMC	VOLUSIA, MORRIS, AND ERIE SOILS	0-15	D	HIGH	0.24	16.9	>78.7		

						CONSTITUTIO WETLAND		•	
					SITE SC-66: TOWER ROAD				
					GENERAL NOTES				
-	- D. W.	-	-	- Chanland	Kleir	<i>schmid</i>	Pitt Tel Fax	Main Street P.O. Box 650 sfield, Maine 04967 lephone: (207) 487-3328 k: (207) 487-3124	
No.	Revision	Date	Drawn	Checked			W\	ww.KleinschmidtUSA.com	
SIGNATU ELECTRO PURPOS	CUMENT IS A DRAFT VERSION PROVIDED FOR THE CONVENIENCE OF THE USER AND IS NOT AN INSTRUMENT OF COP FLEIDS CHAMIDT ASSOCIATES UNLESS IT BEARS THE PROFESSIONAL ENGINEER'S STAMP AND ORIGINAL IRE. THIS DOCUMENT IS NOT A PRODUCT, AND TRANSFER OF A VERSION OF AN INSTRUMENT OF SERVICE BY DNIC MEDIA IS NOT DEEMED A SALE. THIS DOCUMENT MAY NOT BE ALTERED BY OTHERS OR USEFOR PROJECTS OR ES OTHER THAN THE PROJECT FOR WHICH IT WAS PREPARED, WITHOUT THE EXPRESS WRITTEN PERMISSION OF MINIT ASSOCIATES.	Designed DDW	Drawn DDW	Checked TAK	Project No. 3786-001	Date Revised Drav 7-31-2014 No.	wing	2	

WETLAN	D METES A	ND BOUNDS TABLE
Line #	Length	Direction
L1	58.84'	N26° 35' 06"W
L2	42.34'	N13° 49' 41"E
L3	63.96'	N52° 43' 09"E
L4	52.02'	N28° 32' 09"W
L5	46.02'	N16° 14' 20"W
L6	41.60'	N42° 54' 31"E
L7	41.95'	N71° 52' 37 " E
L8	49.35'	N67° 06' 52"E
L9	61.89'	N14° 08' 43"E
L10	<i>45.53</i> '	N22° 47' 23"E
L11	49.89'	N35° 15' 40"E
L12	155.10'	N30° 24' 06"E
L13	47.17'	N49° 05' 01"E
L14	29.62'	N48° 54' 16"E
L15	63.78'	N24° 26' 44"E
L16	63.21	N43° 55' 51"E
L17	73.32'	N11° 36' 12"E
L18	84.37'	N13° 24' 05"E
L19	72.99'	N48° 59' 34"E
L20	71.32'	N14° 50′ 23″E

WETLAND METES AND BOUNDS TABLE

57.41'

44.68'

64.89°

53.27'

56.25'

39.28'

117.42'

53.61'

57.93'

57.91'

54.67**'**

52.99'

59.47**'**

49.12'

61.92'

70.93'

L73

L74

L75

L76

L77

L78

L79

L80

Direction

N52° 47' 54"E

N73° 56' 26"E

S81° 30' 06"E

N67° 03' 42"E

N53° 33' 53"E

S46° 37' 30"E

S5° 48' 43"W

S5° 00' 13"W

S7° 53' 58"E

S13° 18' 24"E

S39° 40' 18"W

S24° 16' 57"E

S36° 06' 42"E

S56° 14' 39"E

N40° 24' 16"E

N47° 25′ 44″E

S88° 06' 37"E

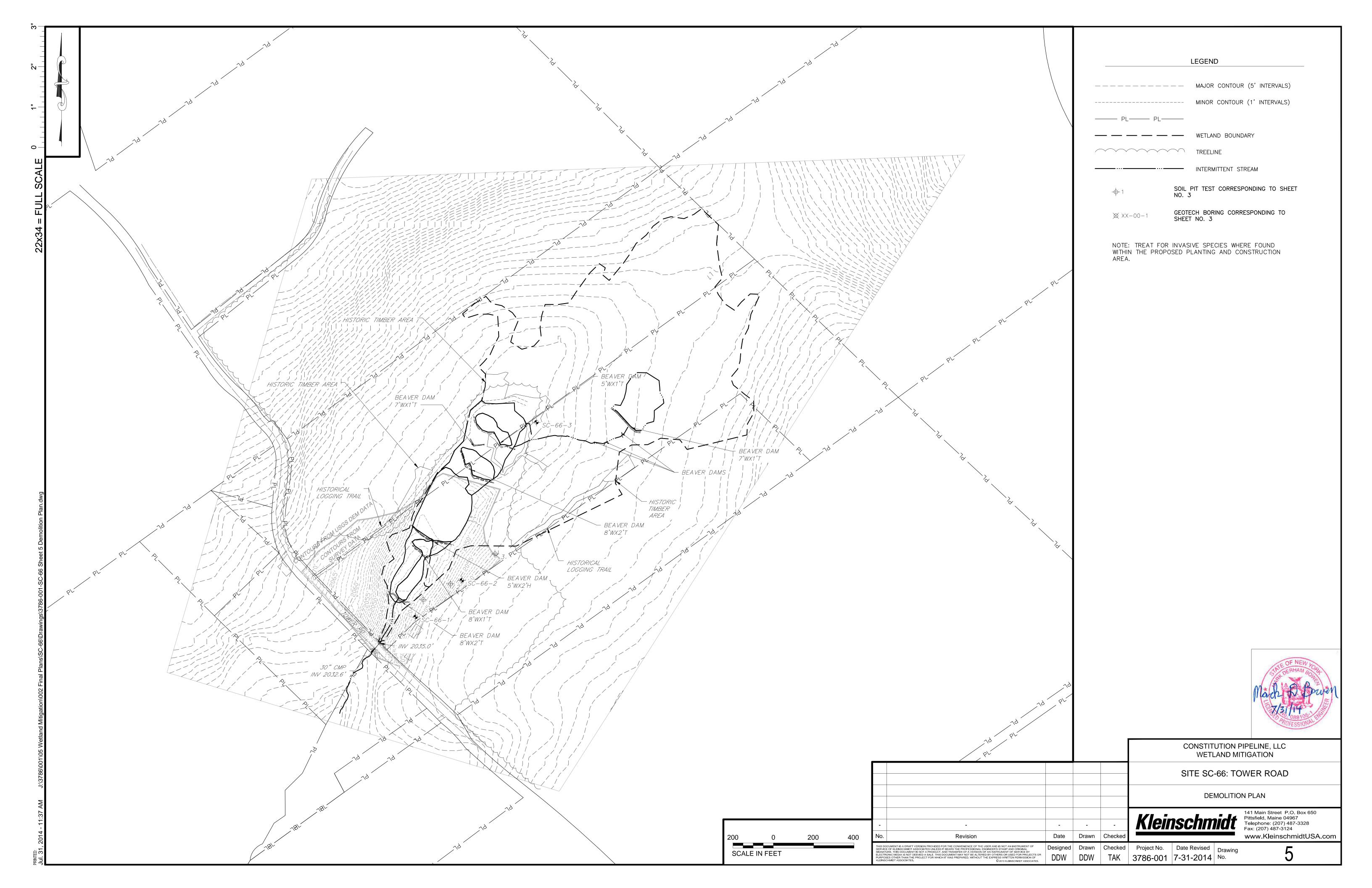
S23° 50′ 33"W

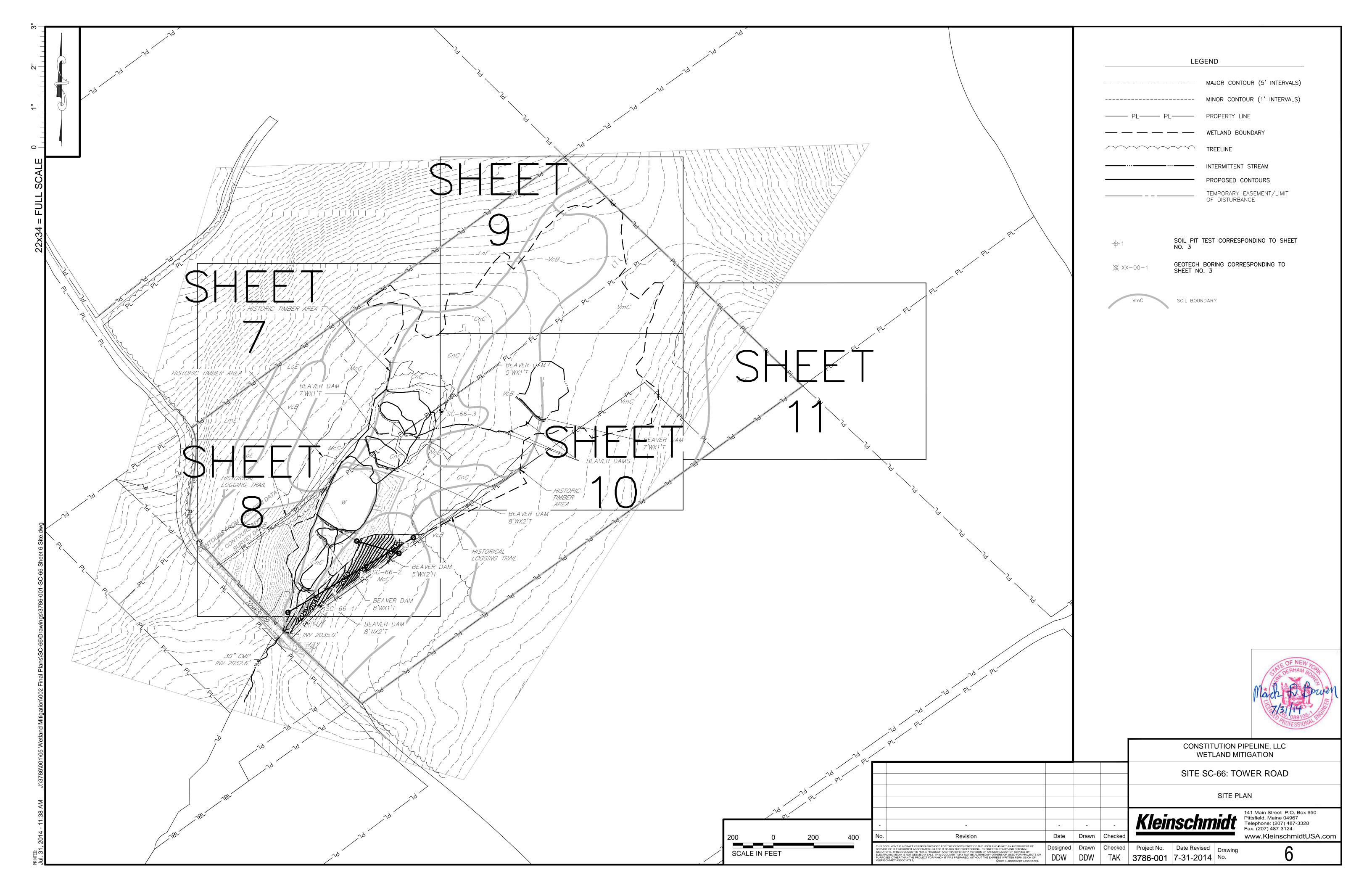
S25° 19' 04"W

S10° 28' 50"W

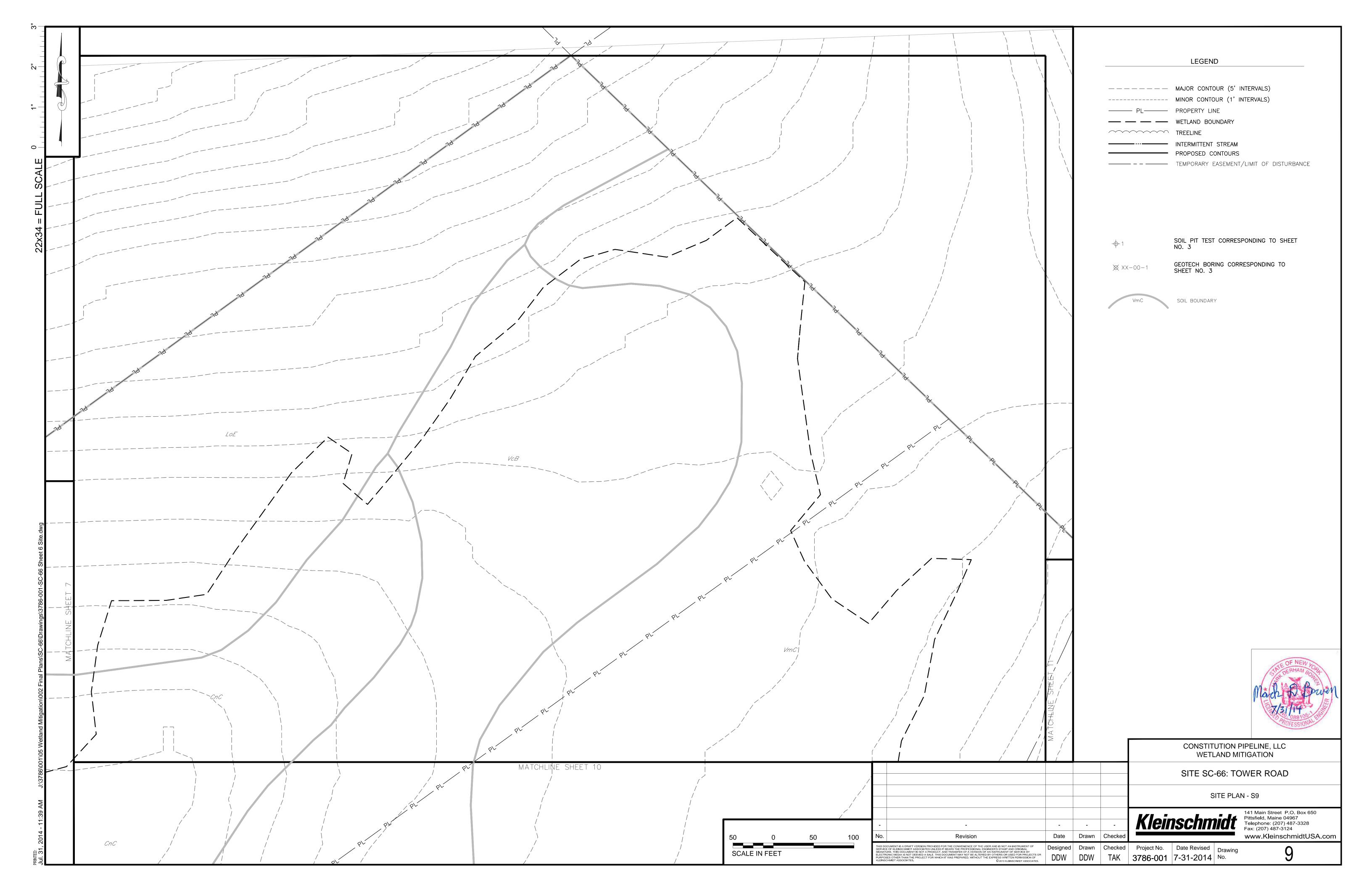
Line # Length

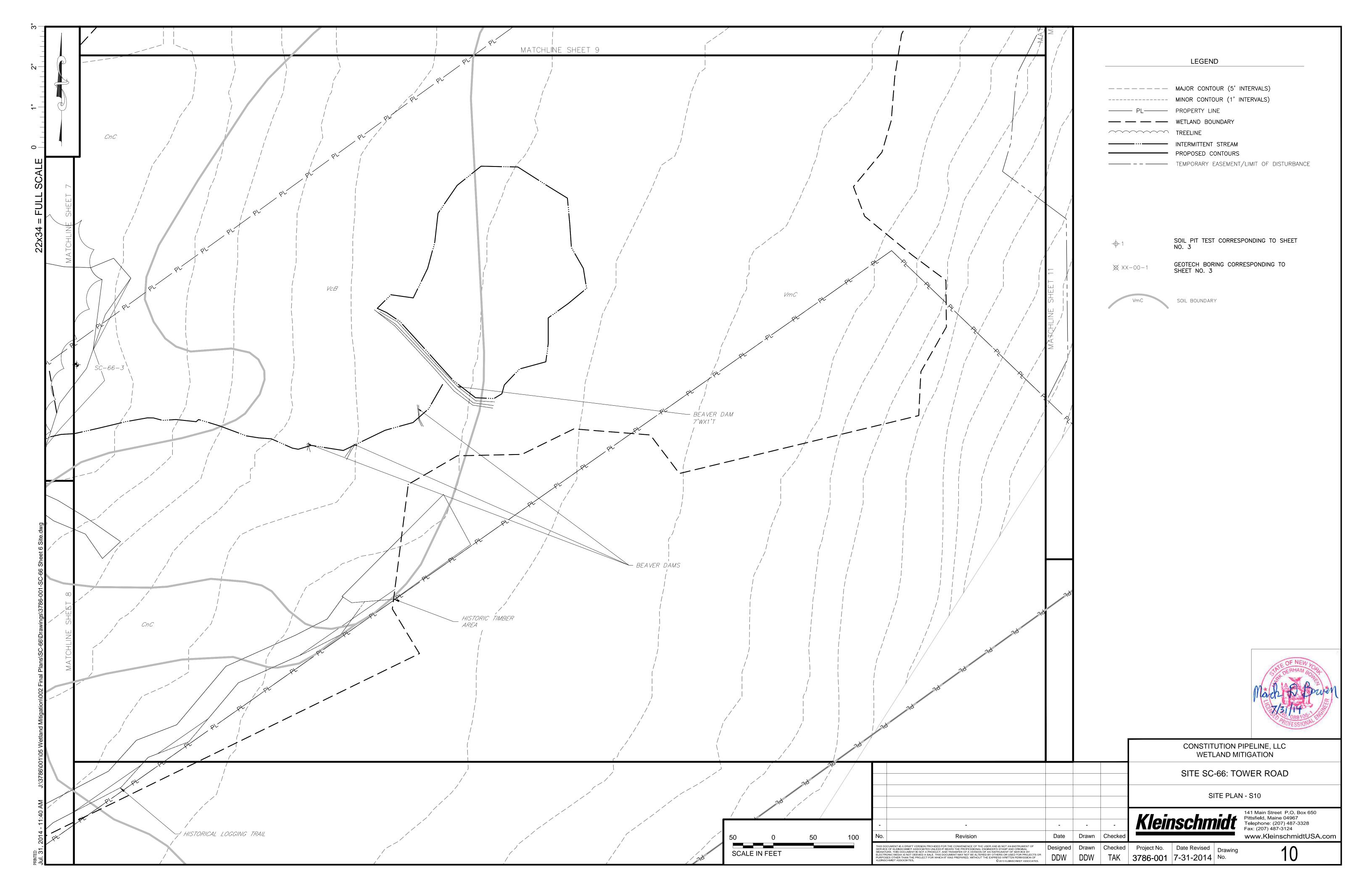
WETLAN	D METES A	ND BOUNDS TABLE
Line #	Length	Direction
L21	62.16'	N1° 21' 42"E
L22	48.09'	N44° 41′ 06″W
L23	<i>35.60</i> '	N44° 30' 26"E
L24	48.74	N40° 33' 53"E
L25	<i>56.43</i> '	N24° 16' 10"E
L26	42.36'	N27° 21' 06"E
L27	62.53'	N2° 30' 25"W
L28	<i>39.12</i> '	N3° 29' 53"W
L29	47.54	N78° 01′ 04"W
L30	51.35'	S88° 10' 12"W
L31	65.93'	S72° 45' 01"W
L32	26.11'	N30° 16' 17"W
L33	76.00'	N49° 29' 20"E
L34	68.66'	N57° 11' 44"E
L35	<i>47.17</i> ′	S40° 10' 29"E
L36	49.58'	S78° 25' 25"E
L37	62.82'	S55° 59' 08"E
L38	48.50'	S37° 33′ 40″E
L39	67.15 '	S22° 45′ 59"W
L40	46.24	S14° 36' 52"W

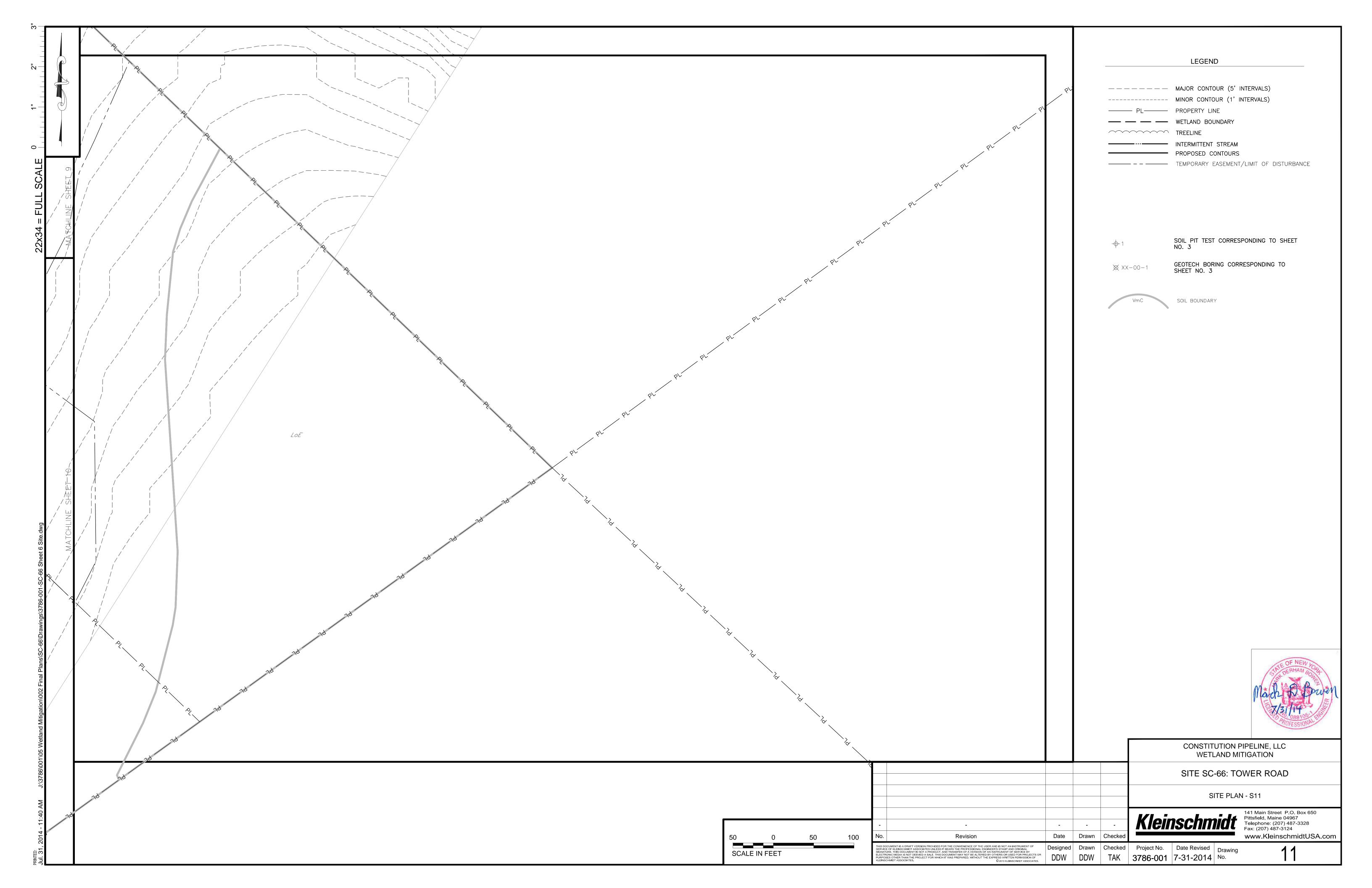

WETLAI	ND METES AN	ND BOUNDS TABLE
Line #	Length	Direction
L81	62.69'	S26° 45′ 32″W
L82	53.48'	S9° 05' 19"W
L83	54.12'	54° 32′ 40″W
L84	41.02'	S16° 22′ 22″W
L85	55.41'	S39° 36' 14"W
L86	39.18'	S20° 44' 03"E
L87	75.73'	S50° 42′ 32″E
L88	52.46'	S53° 21' 11"E
L89	57.91'	S0° 37' 35"E
L90	63.60'	S29° 47′ 20″W
L91	54.59'	S2° 50′ 48″W
L92	305.15	S76° 23′ 49″W
L93	59.83'	N37° 01' 03"W
L94	94.94'	N85° 28' 53"W
L95	71.65'	S63° 53' 27"W
L96	80.12'	S88° 42′ 20″W
L97	70.41	S59° 47′ 25″W
L98	155.54	S7° 15' 14"W
L99	64.61'	S31° 16′ 29″E
L100	583.73'	S64° 00' 15"W

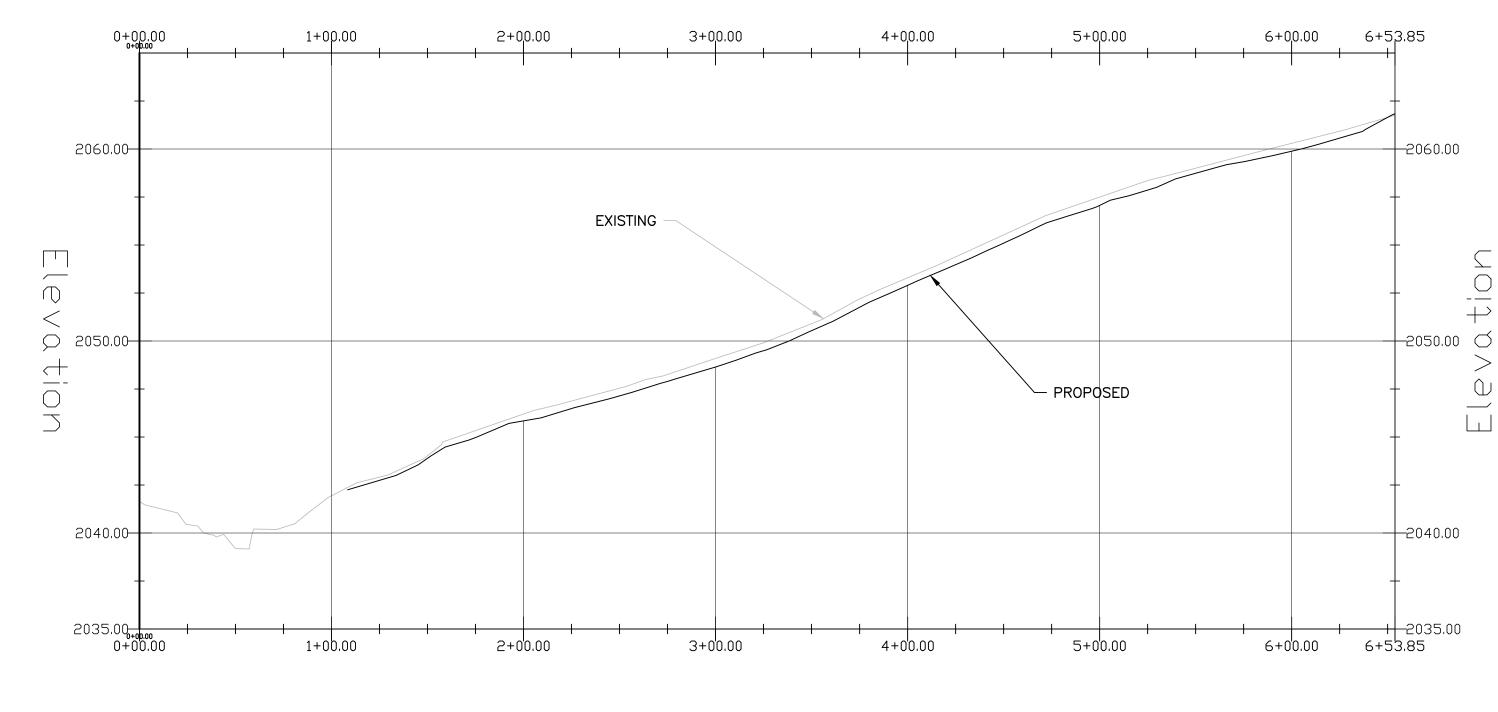

WETLAN	D METES AI	ND BOUNDS TABLE
Line #	Length	Direction
L41	65.83'	S57° 08' 10"E
L42	61.49'	N75° 03' 47"E
L43	54.51	N42° 34' 37"E
L44	52.98'	N6° 34' 25"W
L45	58.09'	N7° 49' 51"E
L46	<i>57.79</i> '	N17° 12' 09"E
L47	67.88'	N89° 39' 45 " E
L48	50.44	N81° 29' 01"E
L49	65.04	N33° 22' 10"E
L50	118.42'	N35° 48' 14"E
L51	63.47'	N45° 37' 55"E
L52	36.14	S55° 42' 27"E
L53	38.58'	S16° 43' 14"W
L54	39.84	S49° 19' 18"E
L55	50.24	N40° 09' 00"E
L56	57.01	N39° 26' 10"E
L57	58.20'	N35° 02′ 11″E
L58	62.01'	N30° 50' 19"E
L59	65.43'	N50° 17' 39"E
L60	<i>55.23</i> '	N37° 46' 22"E

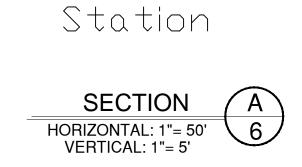

WETLAN	ID METES AN	ND BOUNDS TABLE
Line #	Length	Direction
L101	224.79	N89° 40′ 07″W
L102	75.39'	S73° 38' 13"W
L103	98.97'	S21° 01' 02"W
L104	218.40'	S47° 28′ 00″W
L105	92.12'	S51° 08′ 22″W
L106	172.35'	S29° 59' 07"W
L107	32.67'	S77° 40′ 50″W
L108	89.93'	N23° 00' 30"E
L109	56.51'	N7° 20' 10"E
L110	49.76°	N10° 40' 11"E
L111	90.61'	N5° 18' 37"W


								PIPELINE, LLC TIGATION	
					SITE SC-66: TOWER ROAD				
					WETLANDS METES AND BOUNDS TABLES				
-	-	-	-	-		<i>ischm</i>	<u>idt</u>	141 Main Street P.O. Box 650 Pittsfield, Maine 04967 Telephone: (207) 487-3328 Fax: (207) 487-3124	
SIGNATURE. THIS DOCUMENT ELECTRONIC MEDIA IS NOT DE	Revision ERSION PROVIDED FOR THE CONVENIENCE OF THE USER AND IS NOT AN INSTRUMENT OF SOSCILLATES UNLESS IT BEARS THE PROFESSIONAL ENGINEER'S STAMP AND ORIGINAL IS NOT A PRODUCT, AND TRANSFER OF A VERSION OF AN INSTRUMENT OF SERVICE BY EMED A SALE. THIS DOCUMENT MAY NOT BE ALTERED BY OTHERS OR USED FOR PROJECTS OR PROJECT FOR WHICH IT WAS PREPARED, WITHOUT THE EXPRESS WRITTEN PERMISSION OF	Date Designed DDW	Drawn Drawn DDW	Checked Checked TAK	Project No. 3786-001	Date Revised 7-31-2014	Drawing No.	www.KleinschmidtUSA.com	









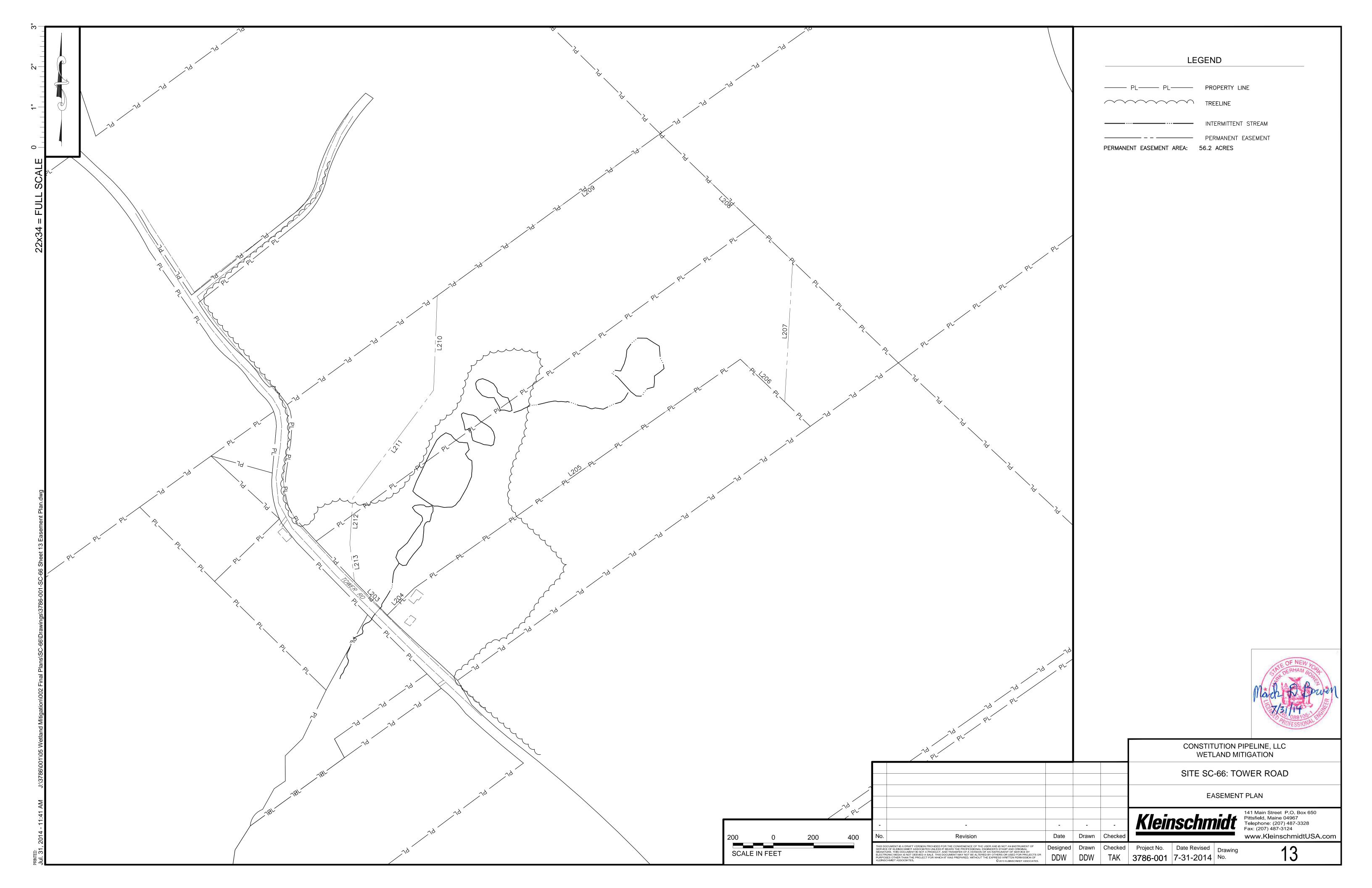
Station

1+00.00

- PROPOSED

2045.00 2+00**20**017.87

Station


EXISTING

2060.00-

SECTION B
HORIZONTAL: 1"= 50'
VERTICAL: 1"= 5'

Station

								PIPELINE, LLC TIGATION
					SITE SC-66: TOWER ROAD			
					SECTIONS			
- No.	- Povision	- Date	- Drawn	- Checked	Klein	schm	<u>idt</u>	141 Main Street P.O. Box 650 Pittsfield, Maine 04967 Telephone: (207) 487-3328 Fax: (207) 487-3124 www,KleinschmidtUSA.com
THIS DOCUMENT IS A SERVICE OF KLEINSC SIGNATURE. THIS DOU ELECTRONIC MEDIA IS	Revision DRAFT VERSION PROVIDED FOR THE CONVENIENCE OF THE USER AND IS NOT AN INSTRUMENT OF HIMDT ASSOCIATES UNLESS IT BEARS THE PROFESSIONAL ENGINEER'S STAMP AND ORIGINAL CUMENT IS NOT A PRODUCT, AND TRANSFER OF A VERSION OF AN INSTRUMENT OF SERVICE BY S NOT DEEMED A SALE. THIS DOCUMENT MAY NOT BE ALTERED BY OTHERS OR USED FOR PROJECTS OR WHICH IT WAS PREPARED, WITHOUT THE EXPRESS WRITTEN PERMISSION OF CIATES. © 2013 KLEINSCHMIDT ASSOCIATES.	Designed DDW	Drawn Drawn DDW	Checked	Project No. 3786-001	Date Revised 7-31-2014	Drawing No.	12

								PIPELINE, LLC TIGATION	
					SITE SC-66: TOWER ROAD				
					CONSERVATION EASEMENT METES AND BOUNDS TABLES				
- No.	- Revision	- Date	- Drawn	- Checked	Klein	schm	nidt (141 Main Street P.O. Box 650 Pittsfield, Maine 04967 Telephone: (207) 487-3328 Fax: (207) 487-3124 www.KleinschmidtUSA.com	
THIS DOCUMENT IS A DRAFT VI SERVICE OF KLEINSCHMIDT AS SIGNATURE. THIS DOCUMENT I: ELECTRONIC MEDIA IS NOT DEI	ERSION PROVIDED FOR THE CONVENIENCE OF THE USER AND IS NOT AN INSTRUMENT OF SOCIATES UNLESS IT BEARS THE PROFESSIONAL ENGINEER'S STAMP AND ORIGINAL SOCIATES UNLESS IT BEARS THE PROFESSIONAL ENGINEER'S STAMP AND ORIGINAL SOCIATED A PRODUCT, AND TRANSFER OF A VERSION OF AN INSTRUMENT OF SERVICE BY MEDICALE. THIS DOCUMENT MAY NOT BE ALTERED BY OTHERS OR USED FOR PROJECTS OR ROJECT FOR WHICH IT WAS PREPARED, WITHOUT THE EXPRESS WRITTEN PERMISSION OF	Designed DDW	Drawn DDW	Checked	Project No. 3786-001	Date Revised 7-31-2014	Drawing No.	14	

- 1. THE PLANTING CONTRACTOR SHALL FOLLOW GENERAL INDUSTRY STANDARDS AND THE PLANTING DENSITY TABLE PROVIDED IN THE PLANS FOR PLANTING IN APPROVED CLUMPS OR GROUPS NEAR THE HIGHER END OF THE SPECIFIED ELEVATION RANGES.
- 2. THE PLANTING CONTRACTOR IS RESPONSIBLE FOR PLANTING AT APPROPRIATE ELEVATIONS AND WATER
- 3. THE PLANTING CONTRACTOR SHALL PRESERVE AND MAINTAIN THE PLANTS IN A HEALTHY CONDITION DURING THE ESTABLISHMENT PERIOD. THE ESTABLISHMENT PERIOD WILL END AS SPECIFIED IN THE SPECIFICATIONS.
- 4. ALL PLANTING MATERIAL SHALL BE FREE OF UNWANTED SEED OR INVASIVE PLANT MATERIAL.
- 5. THE PLANTING CONTRACTOR SHALL NOTIFY THE ENGINEER IN WRITING PRIOR TO PLANT INSTALLATION IF CONFLICTS BETWEEN THE CONTRACT DOCUMENTS AND FIELD CONDITIONS ARE FOUND.
- 6. THE PLANTING CONTRACTOR IS RESPONSIBLE TO GROW OR ACQUIRE THE REQUIRED PLANT MATERIAL. THE PLANT MATERIAL SHALL BE OF THE SIZE SPECIFIED AT THE TIME OF PLANTING. KLEINSCHMIDT ASSOCIATES SHALL BE AFFORDED THE OPPORTUNITY TO INSPECT THE PLANT MATERIAL PERIODICALLY AND PRIOR TO INSTALLATION. ANY PLANT MATERIAL REJECTED SHALL BE REPLACED AT THE CONTRACTOR'S EXPENSE. THE CONTRACTOR IS RESPONSIBLE TO START THE PLANTS TO ENABLE PLANTING WITHIN THE TIMEFRAME ESTABLISHED BY THE CONTRACT FOR THIS WORK.
- 7. THE PLANTING CONTRACTOR WILL PLANT IN SPECIFIED AREAS PER PLANS, AFTER THE EXCAVATION CONTRACTOR HAS GRADED THE SITE, AND COMPLETED THEIR WORK ON THE SITE AREA TO BE PLANTED. AFTER KLEINSCHMIDT NOTIFIES THE CONTRACTOR THAT THE AS-BUILT SURVEY HAS BEEN APPROVED, THE PLANTING CONTRACTOR MAY BEGIN PLANTING THE SITE.

Zone	Туре	Acres	Trees	Shrubs	Seed (20 lbs/acre)	Herbaceous Plugs
Upland Buffer	Establishment	1.9	(200/acre)	(50/acre)		
Tree	#3	90%	342			
Tree	#7	10%	38			
Shrub	#1	100%		95		
Seed	lbs	100%			38	
Forested Wetland	Enhancement	0.5	(200/acre)	(50/acre)		
Tree	#3	90%	90			
Tree	#7	10%	10			
Shrub	#1	100%		25		
Seed	lbs	100%			10	
Forested Wetland	Establishment	1.5	(450/acre)	(50/acre)		
Tree	#3	90%	608			
Tree	#7	10%	68			
Shrub	#1	100%		75		
Seed	lbs	100%			30	
Scrub Shrub Wetland	Enhancement	0.9		(150/acre)		(1,000/acre)
Shrub	#3	100%		135		
Seed	lbs	100%			18	
Herbaceous	plugs	100%				900
Emergent Wetland	Enhancement	0.1				(2,000/acre)
Seed	lbs	100%			2	
Herbaceous	plugs	100%				200
_		TOTALS:	1,155	330	98	1,100

Scientific name	Common Name	NCNE	mix ratio
Acer saccharinum	Silver maple	FACW	
Acer saccharum	Sugar maple	FACU	
Betula alleghaniensis	Yellow birch	FAC	
Betula papyrifera	Paper birch	FACU	
Betula populifolia	Gray birch	FAC	
Carpinus caroliniana	American hornbeam	FAC	1007
Nyssa sylvatica	Black gum	FAC	60%
Platanus occidentalis	American sycamore	FACW	
Populus deltoides	Cottonwood	FAC	
Prunus serotina	Black cherry	FACU	
Quercus bicolor	Swamp white oak	FACW	
Tsuga canadensis	Eastern hemlock	FACU	
Acer rubrum	Red maple	FAC	
Quercus alba	White oak	FACU	40%
Quercus montana	Chestnut oak	UPL	40%
Quercus rubra	Northern red oak	FACU	

UPLAND BUFFER: SHRUBS								
cientific name	Common Name	NCNE	mix ratio					
melanchier canadensis	Serviceberry	FAC						
ronia arbutifolia	Red Chokeberry	FACW						
ronia meloncarpa	Black Chokeberry	FAC						
runus virginiana	Chokecherry	FACU	100%					
iburnum acerifolium	Maple Leaf Viburnum	UPL						
iburnum lentago	Nannyberry	FAC						
iburnum prunifolium	Blackhaw	FACU						

Scientific name	Common Name	NCNE	mix ratio
Andropogon virginicus	Broomsedge	FACU	17.50%
Asclepias syriaca	Common Milkweed		0.94%
Asclepias tuberosa	Butterfly Milkweed		1.25%
Aster lateriflorus	Calico Aster	FAC	0.63%
Bouteloua curtipendula	Sideoats Grama		5.00%
Senna marilandica	Maryland Senna	FACW	0.63%
Coreopsis lanceolata	Lanceleaf Coreopsis	FACU	0.63%
Coreopsis tinctoria	Plains Coreopsis	FACU	0.63%
Desmodium canadense	Showy Ticktrefoil	FAC	0.63%
Elymus hystrix	Bottlebrush Grass	FACU	5.00%
Elymus virginicus	Virginia Wildrye	FACW	5.00%
Eragrostis hirsuta	Bigtop Lovegrass	5.00%	
Gaillardia aristata	Perennial Gaillardia		0.31%
Helenium flexuosum	Purplehead Sneezeweed	FAC	1.25%
Heliopsis helianthoides	Oxeye Sunflower	FACU	0.93%
Lespedeza virginica	Slender Bushclover		1.24%
Liatris spicata	Marsh Blazing Star	FAC	0.31%
Panicum virgatum	Switchgrass	FAC	5.00%
Penstemon laevigatus	Appalachian Beardtongue	FACU	0.62%
Rudbeckia triloba	Browneyed Susan	FACU	1.87%
Schizachyrium scoparium	Little Bluestem	FACU	27.50%
Solidago juncea	Early Goldenrod		1.25%
Solidago rugosa	Wrinkleleaf Goldenrod	FAC	1.25%
Symphyotrichum novae-angliae	New England Aster	FACW	0.63%
Tridens flavus	Purpletop	UPL	15.00%

FORESTED WETLAND: TREES						
Scientific name	Common Name	NCNE	mix ratio			
Acer rubrum	Red maple	FAC				
Acer saccharinum	Silver maple	FACW				
Betula populifolia	Gray birch	FAC				
Nyssa sylvatica	Black gum	FAC	80%			
Platanus occidentalis	Sycamore	FACW	80%			
Populus deltoides	Cottonwood	FAC				
Quercus bicolor	Swamp white oak	FACW				
Quercus palustris	Pin oak	FACW				
Betula alleghaniensis	Yellow birch	FAC				
Betula nigra	River birch	FACW				
Carpinus caroliniana	American hornbeam	FAC	20%			
Tsuga canadensis	Eastern Hemlock	FACU				
Salix nigra	Black willow	OBL				

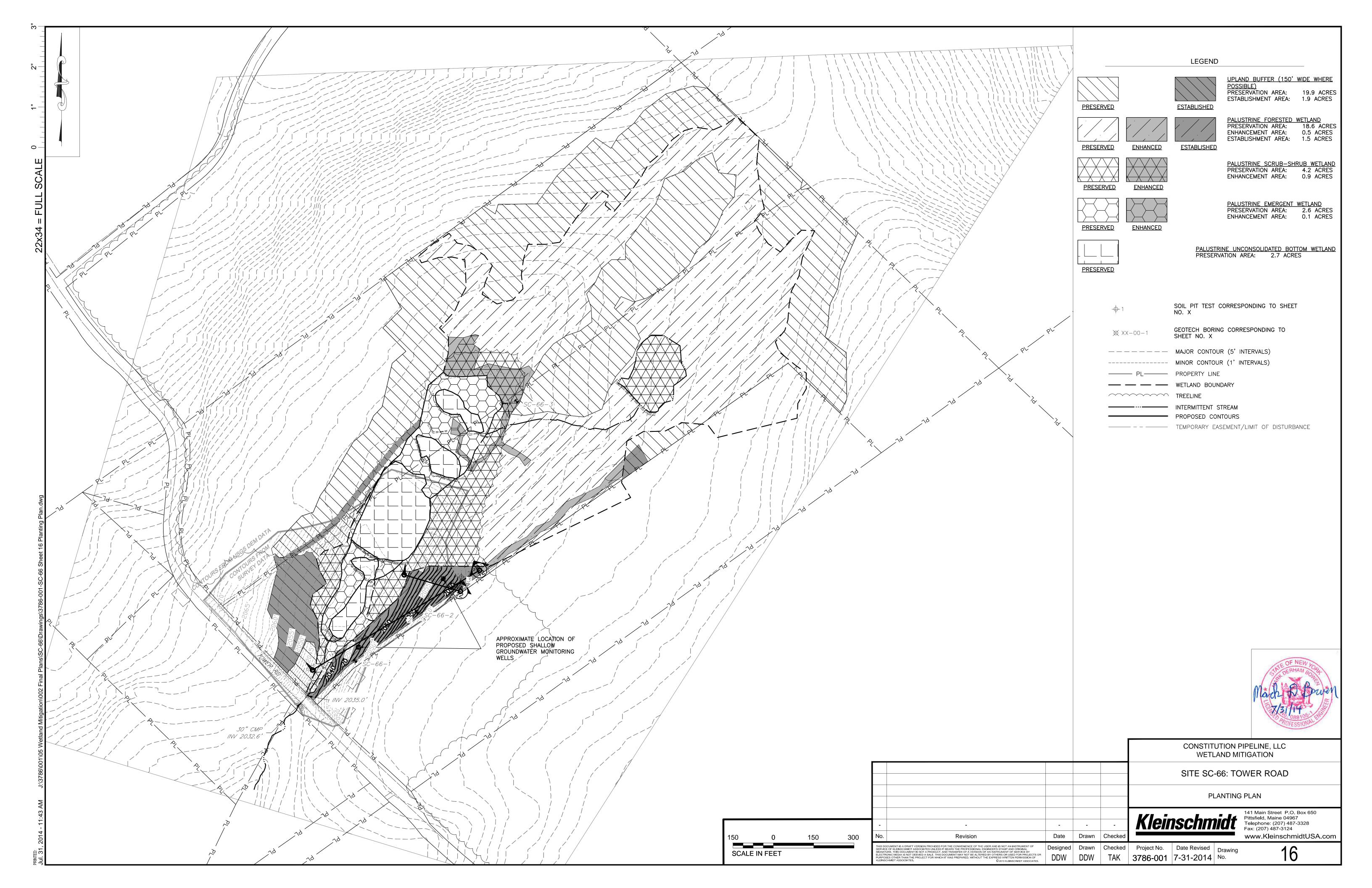
F	ORESTED WETLAND: SHRU	BS	
Scientific name	Common Name	NCNE	mix ratio
Alnus serrulata	Smooth Alder	OBL	
Cornus amomum	Silky Dogwood	FACW	
Cornus racemosa	Gray Dogwood	FAC	60%
Lindera benzoin	Spicebush	FACW	00%
Sambucus canadensis	Elderberry	FACW	
Vaccinium corymbosum	Highbush Blueberry	FACW	
Clethra alnifolia	Sweet Pepperbush	FAC	
llex verticillata	Winterberry	FACW	
Viburnum cassinoides	Wild Raisin	FACW	40%
Viburnum dentatum	Arrowwood	FAC	
Viburnum lentago	Nannyberry	FACW	

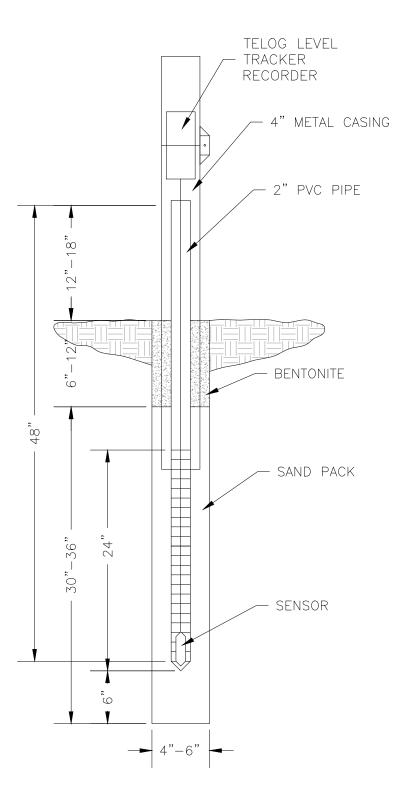
FORESTED WETLAND: SEED MIX							
Scientific name	Common Name	NCNE	mix ratio				
Asclepias incarnata	Swamp Milkweed	OBL	3%				
Carex folliculata	Northern Long Sedge	OBL	1%				
Carex intumescens	Bladder Sedge	FACW	1%				
Carex Iupulina	Hop Sedge	OBL	5%				
Carex Iurida	Lurid Sedge	OBL	10%				
Carex squarrosa	Squarrose Sedge	OBL	3%				
Carex vulpinoidea	Fox Sedge	OBL	25%				
Cinna arundinacea	Wood Reedgrass	FACW	1%				
Doellingeria umbellata	Flat Topped White Aster	FACW	1%				
Elymus virginicus	Virginia Wildrye	FACW	20%				
Eupatorium fistulosum	Joe Pye Weed	FACW	1%				
Eupatorium perfoliatum	Boneset	FACW	2%				
Glyceria canadensis	Rattlesnake Grass	OBL	2%				
Helopsis helianthoides	Oxeye Sunflower	FACU	2%				
Juncus effusus	Soft Rush	OBL	3%				
Lilium superbum	Turk's Cap Lily	FACW	1%				
Lobelia siphilitica	Great Blue Lobelia	FACW	1%				
Mimulus ringens	Square Stemmed Monkey	OBL	1%				
Onoclea sensibilis	Sensitive Fern	FACW	2%				
Panicum rigidulum	Redtop Panicgrass	FACW	4%				
Polygonum pensylvanicum	Pennsylvania Smartweed	FACW	1%				
Pycnanthemum tenuifolium	Slender Mountainmint	FAC	1%				
Scirpus polyphyllus	Many Leaved Bulrush	OBL	1%				
Sisyrinchium angustifolium	Narrowleaf Blue Eyed Gro	FAC	1%				
Symphyotrichum novae-angli	New England Aster	FACW	1%				
Symphyotrichum prenanthoic	Zigzag Aster, PA Ecotype	FAC	1%				
Symphyotrichum puniceum	Purplestem Aster	OBL	1%				
Verbena hastata	Blue Vervain	FACW	3%				
Vernonia noveboracensis	New York Ironweed	FACW	1%				

SCRUB-SHRUB WETLAND: SHRUBS							
Scientific name	Common Name	NCNE	mix ratio				
Alnus incana rugosa	Speckled alder	FACW					
Cephalanthus occidentalis	Buttonbush	OBL					
Cornus amomum	Silky Dogwood	FACW					
Cornus sericea	Red osier dogwood	FACW					
llex verticillata	Winterberry	FACW	60%				
Physocarpus opulifolius	Ninebark	FACW	00%				
Sambucus canadensis	Elderberry	FACW]				
Spiraea latifolia	Meadowsweet	FACW					
Rosa palustris	Swamp Rose	OBL	1				
Viburnum nudum	Possumhaw	FACW					
Alnus serrulata	Smooth Alder	OBL					
Salix discolor	Pussy Willow	FACW]				
Salix exugia	Sandbar Willow	FACW	40%				
Spiraea tomentosa	Steeplebush	FACW					
Viburnum dentatum	Arrowwood	FAC					
	1						

Scientific name	Common Name	NCNE	mix ratio
Asclepias incarnata	Swamp Milkweed	OBL	
Carex comosa	Bristly Sedge	OBL	
Carex lacustris	Lake Sedge	OBL	
Carex vulpinoidea	Fox Sedge	OBL	
Eutrochium maculatum	Spotted Joe-pye weed	OBL	
Eupatorium perfoliatum	Boneset	FACW	
Lobelia siphilitica	Great Blue Lobelia	FACW	60%
Osmunda regalis	Royal Fern	OBL	0070
Peltandra virginica	Arrow Arum	OBL	
Schoenoplectus fluviatilis	River Bulrush	OBL	
Sparganium americanum	Eastern Burreed	OBL	
Sparganium eurycarpum	Giant Burreed	OBL	
Symphyotrichum puniceum	Puplestem Aster	OBL	
Calamogrostis canadensis	Blue joint grass	OBL	
Carex stricta	Tussock sedge	OBL	40%
Spartina pectinata	Praire Cordgrass	FACW	40%
Symphyotrichum novae-an	New England aster	FACW	

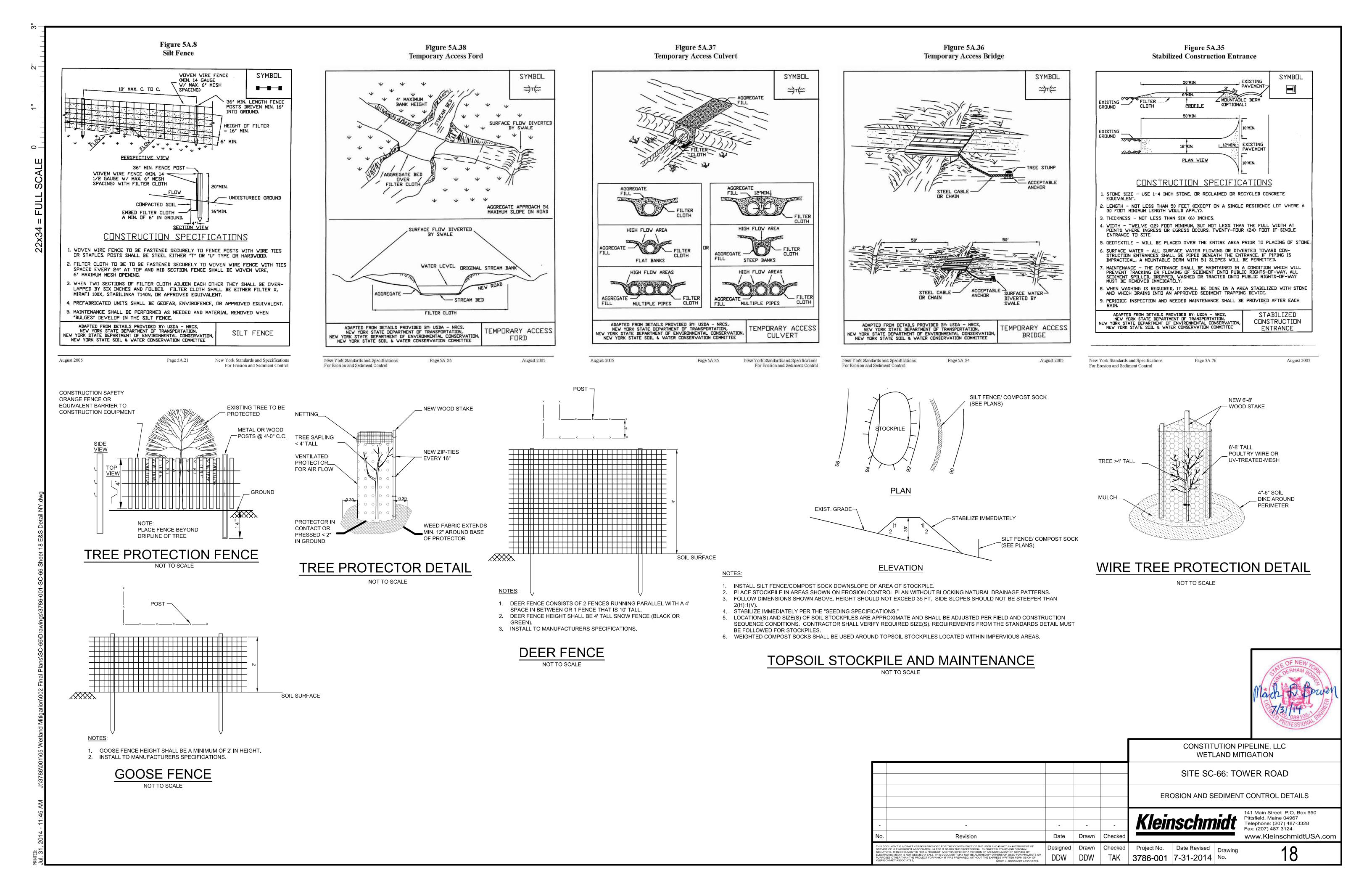
Scientific name	Common Name	NCNE	mix ratio
Asclepias incarnata	Swamp Milkweed	OBL	3%
Carex folliculata	Northern Long Sedge	OBL	1%
Carex intumescens	Bladder Sedge	FACW	1%
Carex Iupulina	Hop Sedge	OBL	5%
Carex Iurida	Lurid Sedge	OBL	10%
Carex squarrosa	Squarrose Sedge	OBL	3%
Carex vulpinoidea	Fox Sedge	OBL	25%
Cinna arundinacea	Wood Reedgrass	FACW	1%
Doellingeria umbellata	Flat Topped White Aster	FACW	1%
Elymus virginicus	Virginia Wildrye	FACW	20%
Eutrochium fistulosum	Joe Pye Weed	FACW	1%
Eupatorium perfoliatum	Boneset	FACW	2%
Glyceria canadensis	Rattlesnake Grass	OBL	2%
Heliopsis helianthoides	Oxeye Sunflower	FACU	2%
Juncus effusus	Soft Rush	OBL	3%
Lilium superbum	Turk's Cap Lily	FACW	1%
Lobelia siphilitica	Great Blue Lobelia	FACW	1%
Mimulus ringens	Square Stemmed Monkeyflo	OBL	1%
Onoclea sensibilis	Sensitive Fern	FACW	2%
Panicum rigidulum	Redtop Panicgrass	FACW	4%
Polygonum pensylvanicum	Pennsylvania Smartweed	FACW	1%
Pycnanthemum tenuifolium	Slender Mountainmint	FAC	1%
Scirpus polyphyllus	Many Leaved Bulrush	OBL	1%
Sisyrinchium angustifolium	Narrowleaf Blue Eyed Grass	FAC	1%
Symphyotrichum novae-ang	New England Aster	FACW	1%
Symphyotrichum prenantho	Zigzag Aster, PA Ecotype	FAC	1%
Symphyotrichum puniceum	Purplestem Aster	OBL	1%
Verbena hastata	Blue Vervain	FACW	3%
Vernonia noveboracensis	New York Ironweed	FACW	1%


Scientific name	Common Name	NCNE	mix ratio
Acorus americanus	Sweetflag	OBL	
Calamogrostis canadensis	Blue joint grass	OBL	
Carex crinita	Fringed sedge	OBL	
Carex intumenscens	Bladder sedge	FACW	
Carex stricta	Tussock sedge	OBL	
Eleocharis palustris	Spike rush	OBL	
Eupatorium perfoliatum	Common Boneset	FACW	
Eutrochium maculatum	Spotted Joe-pye weed	OBL	
Glyceria canadensis	Manna grass	OBL	
Helenium autumnale	Fall Sneezeweed	FACW	
Helianthus angustifolius	Swamp Sunflower	FACW	, OQ7
Juncus effusus	Soft rush	OBL	60%
Liatris spicata	Dense Gayfeather	FAC]
Lobelia cardinalis	Cardinal flower	OBL	
Lobelia siphilitica	Great Blue Lobelia	FACW	
Mimulus ringens	Monkey flower	OBL	
Onoclea sensibilis	Sensitive fern	FACW	1
Scirpus atrovirens	Dark green bulrush	OBL	
Scirpus cyperinus	Woolgrass	OBL	
Symphyotrichum novae-angliae	New England aster	FACW	
Symphyotrichum novi-belgii	New York Aster	FACW	
Verbena hastata	Blue vervain	FACW	
Asclepias incarnata	Swamp Milkweed	OBL	
Carex comosa	Bristly Sedge	OBL	
Carex lacustris	Lake Sedge	OBL	
Carex Iupulina	Hop Sedge	OBL	
Carex Iurida	Lurid Sedge	OBL	
Carex vulpinoidea	Fox Sedge	OBL	
lris versicolor	Blueflag Iris	OBL	40%
Liatris pycnostachya	Cat-Tail Gayfeather	FAC	
Sagittaria latifolia	Arrowhead	OBL	
Schoenoplectus fluviatilis	River Bulrush	OBL]
Schoenoplectus tabernaemontani	Softstem Bulrush	OBL	1
Sparganium americanum	Eastern Burreed	OBL	1
Sparganium eurycarpum	Giant Burreed	OBL	1
Spartina pectinata	Praire Cordgrass	FACW	1


EMERGENT WETLAND: HERBACEOUS PLUGS

Scientific name	Common Name	NCNE	mix ratio
Alisma subcordatum	Water Plantain	OBL	1%
Asclepia incarnata	Swamp Milkweed	OBL	3%
Bidens cernua	Nodding Bur Marigold	OBL	1%
Carex crinita	Fringed Sedge	OBL	2%
Carex folliculata	Northern Long Sedge	OBL	1%
Carex gynandra	Nodding Sedge	OBL	9%
Carex Iupulina	Hop Sedge	OBL	5%
Carex Iurida	Lurid Sedge	OBL	10%
Carex stricta	Tussock Sedge	OBL	1%
Carex vulpinoidea	Fox Sedge	OBL	29%
Chelone glabra	Turtlehead	1%	
Eutrochium fistulosum	Joe Pye Weed	FACW	1%
Eupatorium perfoliatum	Boneset	FACW	2%
Glyceria canadensis	Rattlesnake Grass	OBL	3%
Juncus effusus	Soft Rush	OBL	3%
Mimulus ringens	Monkeyflower	OBL	2%
Panicum rigidulum	Redtop Panicgrass	FACW	5%
Penthorum sedoides	Ditch Stonecrop	OBL	1%
Scirpus cyperinus	Woolgrass	OBL	2%
Scirpus polyphyllus	Many Leaved Bulrush OBL		2%
Sparganium americanum	Eastern Bur Reed	OBL	10%
Symphyotrichum puniceum	Purplestem Aster	OBL	2%
Verbena hastata	Blue Vervain	FACW	3%
Vernonia noveboracensis	New York Ironweed	FACW	1%

					N PIPELINE, LLC MITIGATION		
						SITE SC-66:	TOWER ROAD
						PLANTING NO	TES AND TABLES
-	-	-	-	-	Kleir	<i>ischmid</i>	141 Main Street P.O. Box 650 Pittsfield, Maine 04967 Telephone: (207) 487-3328 Fax: (207) 487-3124
No.	Revision	Date	Drawn	Checked			www.KleinschmidtUSA.com
SERVICE C SIGNATUR ELECTRON PURPOSES	CUMENT IS A DRAFT VERSION PROVIDED FOR THE CONVENIENCE OF THE USER AND IS NOT AN INSTRUMENT OF OF KLEINSCHMIDT ASSOCIATES UNLESS IT BEARS THE PROFESSIONAL ENGINEER'S STAMP AND ORIGINAL RE. THIS DOCUMENT IS NOT A PRODUCT, AND TRANSFER OF A VERSION OF AN INSTRUMENT OF SERVICE BY NOIC MEDIA IS NOT DEEMED A SALE. THIS DOCUMENT MAY NOT BE ALTERED BY OTHERS OR USED FOR PROJECTS OR ES OTHER THAN THE PROJECT FOR WHICH IT WAS PREPARED, WITHOUT THE EXPRESS WRITTEN PERMISSION OF HAIDT ASSOCIATES.	Designed DDW	Drawn DDW	Checked TAK	Project No. 3786-001	Date Revised Draw No.	ing 15



SHALLOW GROUNDWATER MONITORING WELL

(N.T.S)

				_				
								PIPELINE, LLC TIGATION
					SITE SC-66: TOWER ROAD			
					DETAILS			LS
-	-	-	-	-	Klein	nschm	<u>iidt</u>	141 Main Street P.O. Box 650 Pittsfield, Maine 04967 Telephone: (207) 487-3328 Fax: (207) 487-3124
No.	Revision	Date	Drawn	Checked				www.KleinschmidtUSA.com
SERVICE OF KLEINSCHMIDT AS SIGNATURE. THIS DOCUMENT IS ELECTRONIC MEDIA IS NOT DEE	RSION PROVIDED FOR THE CONVENIENCE OF THE USER AND IS NOT AN INSTRUMENT OF SOCIATES UNLESS IT BEARS THE PROFESSIONAL ENGINEER'S STAMP AND ORIGINAL NOT A PRODUCT, AND TRANSFER OF A VERSION OF AN INSTRUMENT OF SERVICE BY MED A SALE. THIS DOCUMENT MAY NOT BE ALTERED BY OTHERS OR USED FOR PROJECTS OR ROJECT FOR WHICH IT WAS PREPARED, WITHOUT THE EXPRESS WRITTEN PERMISSION OF © 2013 KLENSCHMIDT ASSOCIATES.	Designed DDW	Drawn DDW	Checked TAK	Project No. 3786-001	Date Revised 7-31-2014	Drawing No.	17

